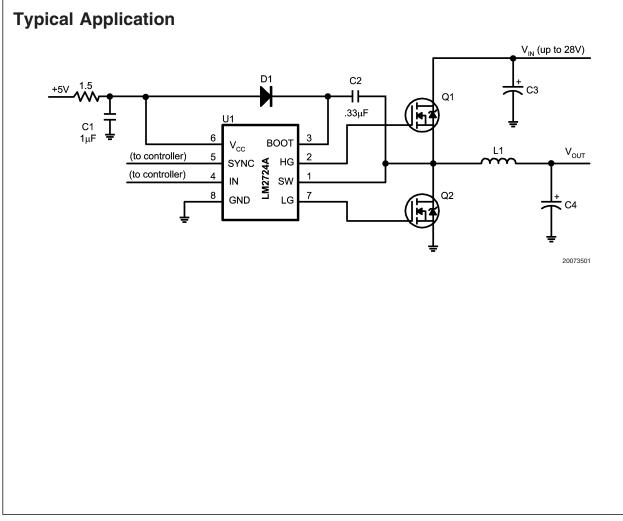
June 2003

LM2724A High Speed 3A Synchronous MOSFET Driver

LM2724A High Speed 3A Synchronous MOSFET Driver General Description The MOSFET can be disabled by the SV rail. The synchronous MOSFET can be disabled by the synchronous term of term

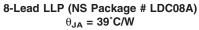
The LM2724A is a dual N-channel MOSFET driver which can drive both the top and bottom MOSFETs in a push-pull structure simultaneously. The LM2724A takes a logic input and splits it into two complimentary signals with a typical 20ns dead time in between. The built-in cross-conduction protection circuitry prevents the top and bottom MOSFETs from turning on simultaneously. With a bias voltage of 5V, the peak sourcing and sinking current for each driver of the LM2724A is about 3A. Input UVLO (Under-Voltage-Lock-Out) ensures that all the driver outputs stay low until the supply rail exceeds the power-on threshold during system power on, or after the supply rail drops below power-on threshold by a specified hysteresis during system power down. The cross-conduction protection circuitry detects both driver outputs and will not turn on a driver until the other driver output is low. The top gate voltage needed by the top MOSFET is obtained through an external boot-strap structure. When not switching, the LM2724A only draws up to


 $195\mu\text{A}$ from the 5V rail. The synchronization operation of the bottom MOSFET can be disabled by pulling the SYNC pin to ground.

Features

- Shoot-through protection
- Input Under-Voltage-Lock-Out
- 3A peak driving current
- 195µA quiescent current
- 28V input voltage in buck configuration
- SO-8 and LLP packages

Applications


- High Current DC/DC Power Supplies
- High Input Voltage Switching Regulators
- Fast Transient Microprocessors
- Notebook Computers

Connection Diagram

				•
	0	;		
sw	[_1_]		8	GND
HG	2	GRO	[7_]	LG
воот	3	GROUND	6	V _{cc}
IN	4		5	SYNC
				20073506
0 1		IC Deales		

Ordering Information

Order Number	Size	NSC Package Drawing	Supplied As
LM2724AM	SO-8	M08A	95 Units/Rail
LM2724AMX			2500 Units/Reel
LM2724ALD	LDC08A	LDC08A	1000 Units/Rail
LM2724ALDX			4500 Units/Reel

Pin Descriptions

Pin	Name	Function
1	SW	Top driver return. Should be connected to the common node of top and bottom FETs
2	HG	Top gate drive output. Should be connected to the top FET gate.
3	BOOT	Bootstrap. Accepts a bootstrap voltage for powering the high-side driver
4	IN	Accepts a logic control signal
5	SYNC	Bottom gate enable
6	V _{cc}	Connect to +5V supply
7	LG	Bottom gate drive output. Should be connected to the bottom FET gate.
8	GND	Ground

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{CC}	7V
BOOT to SW	7V
BOOT to GND (Note 2)	35V
SW to GND	30V
Junction Temperature	+150°C
Power Dissipation	720mW (SO-8)
(Note 3)	3.2W (LLP-8)

Electrical Characteristics

LM2724A

Storage Temperature	–65°C to 150°C
ESD Susceptibility	
Human Body Model (Note 4)	2.0 kV
Soldering Time, Temperature	10sec., 300°C

Operating Ratings (Note 1)

V _{CC}	4.3V to 6.8V
Junction Temperature Range	-40°C to 125°C

 V_{CC} = BOOT = SYNC = 5V, SW = GND = 0V, unless otherwise specified. Typicals and limits appearing in plain type apply for $T_A = T_J = +25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire operating temperature range.

Symbol	Parameter	Condition	Min	Тур	Max	Units
POWER SUPP	PLY					•
I _{q_op}	Operating Quiescent Current	IN = 0V		145	195	μA
TOP DRIVER		-				
	Peak Pull-Up Current			3.0		Α
	Pull-Up Rds_on	$I_{BOOT} = I_{HG} = 0.3A$		1.2		Ω
	Peak Pull-down Current			-3.2		A
	Pull-down Rds_on	$I_{SW} = I_{HG} = 0.3A$		0.5		Ω
t ₄	Rise Time	Timing Diagram, C _{LOAD} =		17		ns
t ₆	Fall Time	3.3nF		12		ns
t ₃	Pull-Up Dead Time	Timing Diagram		19		ns
t ₅	Pull-Down Delay	Timing Diagram, from IN Falling Edge		27		ns
BOTTOM DRI	VER					
	Peak Pull-Up Current			3.2		A
	Pull-up Rds_on	$I_{VCC} = I_{LG} = 0.3A$		1.1		Ω
	Peak Pull-down Current			3.2		A
	Pull-down Rds_on	$I_{GND} = I_{LG} = 0.3A$		0.6		Ω
t ₈	Rise Time	Timing Diagram, C _{LOAD} =		17		ns
t ₂	Fall Time	3.3nF		14		ns
t ₇	Pull-up Dead Time	Timing Diagram		22		ns
t ₁	Pull-down Delay	Timing Diagram		13		ns
LOGIC						
V _{uvlo_up}	V _{CC} Under-Voltage-Lock-Out Upper Threshold	V _{CC} rises from 0V toward 5V			4	v
V _{uvlo_dn}	V _{CC} Under-Voltage-Lock-Out Lower Threshold	VCC falls from 5V toward 0V	2.5			v
V_{uvlo_hys}	V _{CC} Under-Voltage-Lock-Out Hysteresis	V_{CC} falls from 5V toward 0V		0.8		v
V _{IH_SYNC}	SYNC Pin High Input		55%			V
V _{IL_SYNC}	SYNC Pin Low Input				25%	
I _{leak_SYNC}	SYNC Pin Leakage	SYNC = 5V, Sink Current			2	
	Current	SYNC = 0V, Source Current			10	- μΑ

www.national.com

LM2724A

Electrical Characteristics

LM2724A (Continued)

 V_{CC} = BOOT = SYNC = 5V, SW = GND = 0V, unless otherwise specified. Typicals and limits appearing in plain type apply for $T_A = T_J = +25^{\circ}$ C. Limits appearing in **boldface** type apply over the entire operating temperature range.

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{leak_IN}	IN Pin Leakage Current	IN = 0V, Source Current			2	μA
		IN = 5V, Sink Current			10	1
t _{on_min1}	Minimum Positive Pulse					
	Width at IN Pin			160		
	(Note 5)					
t _{on_min2}	Minimum Positive Pulse					
	Width at IN Pin for HG to			45		1
	Respond			45		
	(Note 6)					
t _{on_min3}	Minimum Positive Pulse			10		
	Width at IN Pin for LG to					
	Respond					ns
	(Note 7)					
t _{off_min1}	Minimum Negative Pulse					
	Width at IN Pin for LG to			40		
	Respond			40		
	(Note 8)					
t _{off_min2}	Minimum Negative Pulse					
	Width at IN Pin for HG to			5		
	Respond			5		
	(Note 9)					
V _{IH_IN}	IN High Level Input	When IN pin goes high from	55%			
	Voltage	0V	55 /0			V
V _{IL_IN}	IN Low Level Input	When IN pin goes low from			25%	V _{cc}
	Voltage	5V				

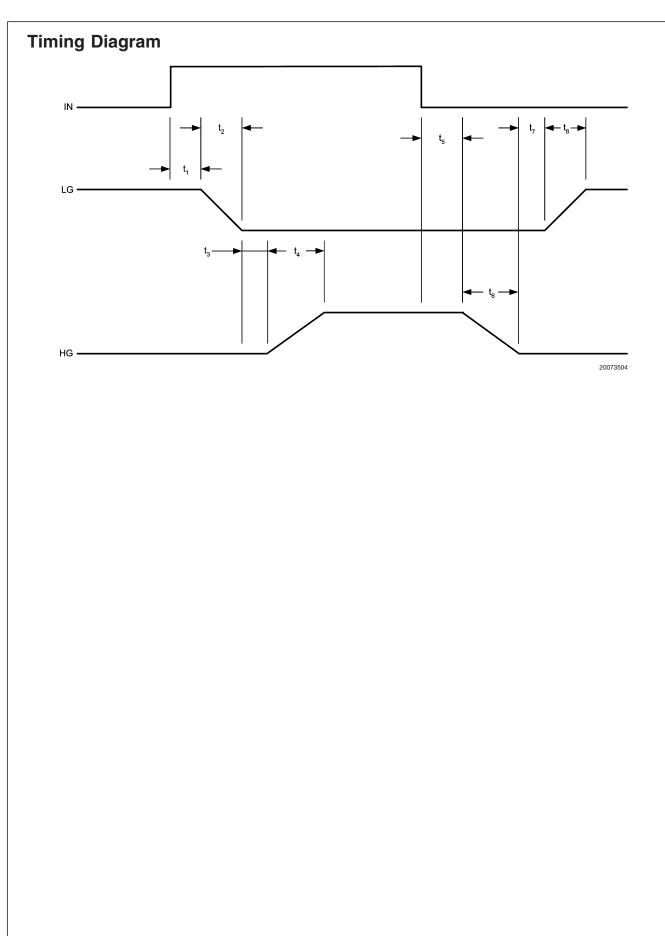
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating ratings are conditions under which the device operates correctly. The gaurnteed specifications apply only for the listed test conditions. Some performance characteristics may degrade when the part is not operated under listed conditions.

Note 2: If BOOT voltage exceeds this value, the ESD structure will degrade.

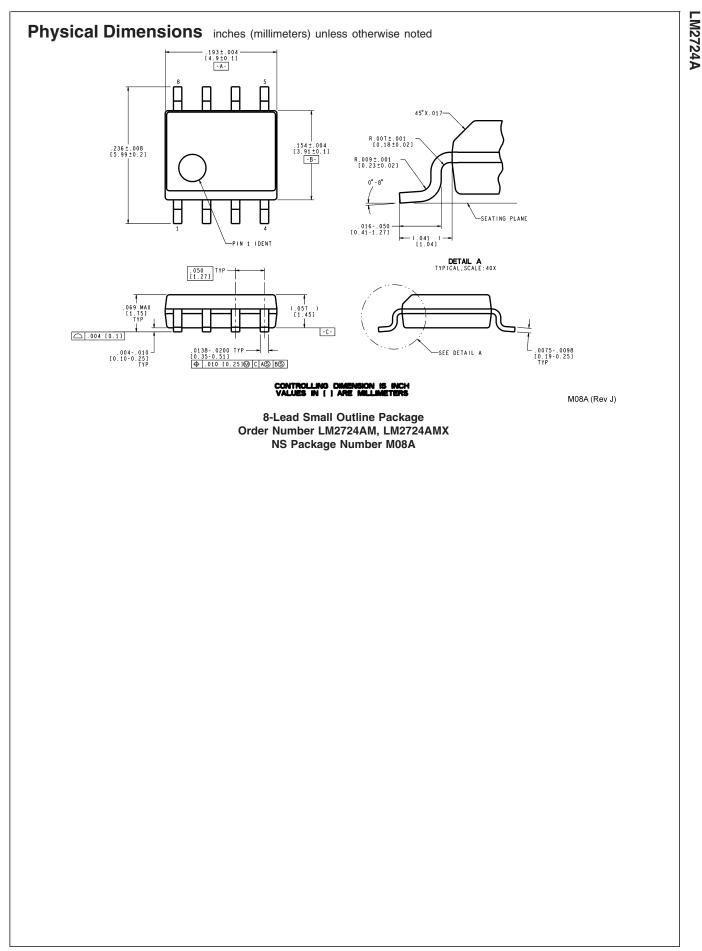
Note 3: Maximum allowable power dissipation is a function of the maximum junction temperature, T_{JMAX} , the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{MAX} = (T_{JMAX}-T_A) / \theta_{JA}$. The junction-to-ambient thermal resistance, θ_{JA} , for LM2724A is 172°C/W. For a T_{JMAX} of 150°C and T_A of 25°C, the maximum allowable power dissipation is 0.7W. The θ_{JA} , for LM2724A LLP package is 39°C/W. For a T_{JMAX} of 150°C and T_A of 25°C, the maximum allowable power dissipation is 3.2W.

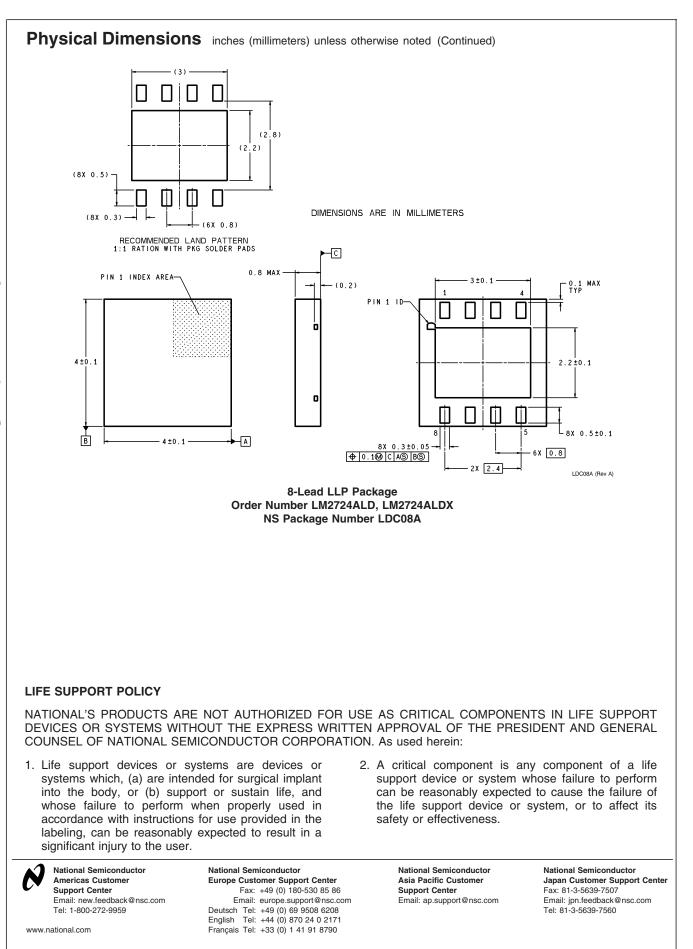
Note 4: ESD machine model susceptibility is 200V.

Note 5: If the positive pulse width at IN pin is below this value but above ton_min2, the pulse is internally stretched to ton_min1, so the HG width will be a constant value.


Note 6: If the positive pulse width at IN pin is below this value but above ton_min3, then HG stops responding while LG still responds to the pulse.

Note 7: If the positive pulse width at IN pin is below this value, the pulse will be completely ignored. Neither HG or LG will respond to it.


Note 8: If the negative pulse width at IN pin is below this value but above toff_min2, then LG stops responding while HG still responds.


Note 9: If the negative pulse width at IN pin is below this value, the pulse will be completely ignored. Neither HG or LG will respond to it.

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.