800 MHz Clock Distribution IC, PLL Core, Dividers, Delay Adjust, Eight Outputs

Preliminary Technical Data

FEATURES

Low phase noise phase-locked loop core Reference input frequencies to $\mathbf{2 5 0 ~ M H z}$ Programmable dual-modulus prescaler Programmable charge pump (CP) current Separate CP supply (VCP) extends tuning range
Two 1.5 GHz , differential clock inputs
8 programmable dividers, 1 to 32, all integers
Phase select for output-to-output coarse delay adjust
4 independent 800 MHz LVPECL outputs
Additive output jitter 225 fs rms
4 independent 800 MHz/250 MHz LVDS/CMOS clock outputs
Additive output jitter 275 fs rms
Fine delay adjust on 2 outputs, 6-bit delay words
4-wire or 3-wire serial control port
Space-saving 64-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution Clocking high speed ADCs, DACs, DDS, DDC, DUC, MxFEs
High performance wireless transceivers
High performance instrumentation
Broadband infrastructure

GENERAL DESCRIPTION

The AD9510 provides a multi-output clock distribution function along with an on-chip PLL core. The design emphasizes low jitter and phase noise in order to maximize data converter performance. Other applications with demanding phase noise and jitter requirements also benefit from this part.

The PLL section consists of a programmable reference divider (R); a low noise phase frequency detector (PFD); a precision charge pump (CP); and a programmable feedback divider (N). By connecting an external VCXO or VCO to the CLK2/CLK2B pins, frequencies up to 1.5 GHz may be synchronized to the input reference.

There are eight independent clock outputs. Four outputs are LVPECL, and four are selectable as either LVDS or CMOS levels. The LVPECL and LVDS outputs operate to 800 MHz , and the CMOS outputs operate to 250 MHz .

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
Each output has a programmable divider that may be bypassed or set to divide by any integer up to 32 . The phase of one clock output relative to another clock output may be varied by means of a divider phase select function that serves as a coarse timing adjustment. Two of the LVDS/CMOS outputs also feature programmable delay elements with a range of up to 10 ns of delay. This fine tuning delay block has 6-bit resolution, giving 64 possible delays from which to choose.

The AD9510 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.
The AD9510 is available in a 64-lead LFCSP and may be operated from a single 3.3 V supply. An external VCO which requires an extended voltage range may be accommodated by connecting the charge pump supply (VCP) to 5.5 V . The temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^0]
TABLE OF CONTENTS

Specifications 3
PLL Characteristics 3
Clock Inputs 4
Clock Outputs 5
Timing Characteristics 5
Clock Output Phase Noise 7
Clock Output Additive Time Jitter 10
PLL and Distribution Phase Noise and Spurious 10
Serial Control Port 11
Function Pin 11
Status Pin 12
Power 12
Timing Diagrams. 13
Absolute Maximum Ratings 14
Thermal Characteristics 14
ESD Caution 14
Pin Configuration and Function Descriptions. 15
Terminology 17
Typical Performance Characteristics 18
Typical Modes of Operation 19
Function Description 21
Overall. 21
PLL Operation 21
PLL Reference Input 21
PLL Reference Divider 21
VCO/VCXO Clock Input 21
VCO/VCXO Feedback Divider 21
A and B Counters 22
Setting Values for P, A, B, and R 22
Phase Frequency Detector (PFD) and Charge Pump. 23
Status Pin 23
CLK1 Clock Input 23
Serial Control Port 24
Serial Control Port Pin Descriptions 24
General Operation of Serial Control Port 24
The Instruction Word (16 Bits) 25
MSB/LSB First Transfers 25
Register Map and Description 27
Summary Table. 27
Register Map Description 30
Applications 38
Using the AD9510 Outputs for ADC Clock Applications 38
CMOS Clock Distribution 38
LVPECL Clock Distribution 39
LVDS Clock Distribution 40
Power and Grounding Considerations, and Power Supply Rejection 40
Outline Dimensions 41
Ordering Guide 41
REVISION HISTORY

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{S}} \leq \mathrm{V}_{\mathrm{CP}} \leq 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=4.12 \mathrm{k} \Omega, \mathrm{CPR}_{\text {SET }}=5.1 \mathrm{k} \Omega$, unless otherwise noted.

PLL CHARACTERISTICS

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
REFERENCE INPUTS (REFIN) Input Frequency Input Sensitivity, Differential Input Voltage, Single-Ended Input Common-Mode Voltage Input Capacitance Input Resistance	0 1.1	$\begin{aligned} & 200 \\ & 1.6 \\ & 2 \\ & 5 \end{aligned}$	250 1.7	MHz mV V V pF k Ω	REFINB capacitively bypassed to RF ground Self-bias voltage of REFINB
PHASE/FREQUENCY DETECTOR (PFD) Phase Frequency Detector Input Frequency Phase Frequency Detector Input Frequency Phase Frequency Detector Input Frequency Antibacklash Pulse Width Antibacklash Pulse Width Antibacklash Pulse Width		$\begin{aligned} & 1.3 \\ & 2.9 \\ & 6.0 \end{aligned}$	80	MHz MHz MHz ns ns ns	Antibacklash pulse width $0 \mathrm{D}<1: 0>=00$ Antibacklash pulse width $0 \mathrm{D}\langle 1: 0\rangle=01$ Antibacklash pulse width $0 \mathrm{D}\langle 1: 0\rangle=10$ $0 \mathrm{D}<1: 0>=00$ $0 \mathrm{D}\langle 1: 0\rangle=01$ $0 D<1: 0>=10$
CHARGE PUMP (CP) ICP Sink/Source High Value Low Value Absolute Accuracy Rset Range IcP Three-State Leakage Sink and Source Current Matching Icp vs. Vcp Icp vs. Temperature		$\begin{aligned} & 5 \\ & 625 \\ & 2.5 \\ & 2.7 / 10 \\ & 1 \\ & 2 \\ & 1.5 \\ & 2 \end{aligned}$		mA $\mu \mathrm{A}$ \% k Ω nA \% \% \%	Programmable $\begin{aligned} & \mathrm{V}_{\mathrm{CP}}=\mathrm{V}_{\mathrm{S}} / 2 \\ & \\ & 0.5 \mathrm{~V}<\mathrm{CP}<\mathrm{V}_{\mathrm{CP}}-0.5 \mathrm{~V} \\ & 0.5 \mathrm{~V}<\mathrm{CP}<\mathrm{V}_{\mathrm{CP}}-0.5 \mathrm{~V} \\ & \mathrm{CP}=\mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$
RF CHARACTERISTICS (CLK2 - PLL FEEDBACK) Input Frequency Input Sensitivity, Differential Input Common-Mode Voltage, V_{cm} Input Single-Ended Sensitivity Input Resistance Input Capacitance		$\begin{aligned} & 200 \\ & 1.6 \\ & V_{\text {см }} \pm 100 \\ & 5 \\ & 2 \end{aligned}$	1.5	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$	CLK2 is electrically identical to CLK1, the distribution only input (see Clock Inputs); can be used as differential or single-ended inputs Frequencies $>800 \mathrm{MHz}$ require a minimum divide-by-2 see the Distribution section Self biased; enables ac coupling When dc-coupled, B input capacitively bypassed to RF ground

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
NOISE CHARACTERISTICS					
In-band noise of the charge pump/ phase frequency detector (inband means within the LBW of the PLL)					The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where N is the N divider value).
@ 50 kHz PFD Frequency		-172		$\mathrm{dBc} / \mathrm{Hz}$	
@ 2 MHz PFD Frequency		-156		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 MHz PFD Frequency		-149		$\mathrm{dBc} / \mathrm{Hz}$	
@ 50 MHz PFD Frequency		-142		$\mathrm{dBc} / \mathrm{Hz}$	
PLL Figure of Merit		$\underset{\left(\mathrm{f}_{\text {PFD })}\right)}{-219+10 \times \log }$		$\mathrm{dBc} / \mathrm{Hz}$	Approximation of the PFD/CP phase noise floor (in the flat region) inside the PLL loop bandwidth. When running closed loop this phase noise is gained up by $20 \times \log (\mathrm{N})^{1}$
PRESCALER					
Prescaler Input Frequency					
$\mathrm{P}=2 \mathrm{DM}(2 / 3)$			500	MHz	
$\mathrm{P}=4 \mathrm{DM}(4 / 5)$			750	MHz	
$\mathrm{P}=8 \mathrm{DM}(8 / 9)$			1500	MHz	
$\mathrm{P}=16 \mathrm{DM}(16 / 17)$			1500	MHz	
$\mathrm{P}=32 \mathrm{DM}(32 / 33)$			1500	MHz	
Prescaler Output Frequency			300	MHz	
PLL DIGITAL LOCK DETECT WINDOW					Signal available at STATUS pin when selected by $08 \mathrm{~h}<5: 2>$
Required to Lock (Coincidence of Edges)					Selected by register ODh
Low Range		3.5		ns	$<5>=1$
High Range		9.5		ns	$<5>=0$
To Unlock after Lock (Hysteresis)					Selected by register ODh
Low Range		7		ns	<5> $=1$
High Range		15		ns	$<5>=0$

${ }^{1}$ Example: $-219+10 \times \log \left(\mathrm{f}_{\text {PFD }}\right)+20 \times \log (\mathrm{N})$ should give the values for the in-band noise at the VCO output.

CLOCK INPUTS

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUTS					CLK1 and CLK2 are electrically identical; can be used as differential or single-ended inputs
Input Frequency			1.5	GHz	Frequencies $>800 \mathrm{MHz}$ require a minimum divide-by-2 see the Distribution section
Input Sensitivity, Differential		200		mV	
Input Common-Mode Voltage , $\mathrm{V}_{\text {cm }}$		1.6		V	Self-biased; enables ac coupling
Input Single-Ended Sensitivity		$\mathrm{V}_{\text {См }} \pm 100$		mV	When dc-coupled, B input capacitively bypassed to RF ground
Input Resistance		5		k Ω	Self-biased
Input Capacitance		2		pF	

AD9510

CLOCK OUTPUTS

Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS OUT0, OUT1 OUT2, OUT3; Differential Output Frequency Output High Voltage ($\mathrm{V}_{\text {он }}$) Output Low Voltage (VoL) Output Differential Voltage (VOD) Isolation LVPECL to LVPECL Output Isolation LVDS to LVPECL Output Isolation CMOS to LVPECL Output	$\begin{aligned} & V_{s}-1.2 \\ & V_{s}-1.8 \end{aligned}$	800	$\begin{aligned} & 800 \\ & V_{s}-0.8 \\ & V_{s}-1.6 \end{aligned}$	MHz V V mV dB dB dB	Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$; default Output level setting 3C (3D) (3E) (3F) <3:2> = 10 @ dc @ dc @ dc 100 MHz output with 50 MHz aggressor 100 MHz output with 50 MHz aggressor 100 MHz output with 50 MHz aggressor
LVDS CLOCK OUTPUTS OUT4, OUT5, OUT6, OUT7; Differential Output Frequency Differential Output Voltage (Vod) Delta Vod Output Offset Voltage (Vos) Delta Vos Short-Circuit Current (IsA, $^{\text {I }}$ ISB) Isolation LVDS to LVDS Isolation LVPECL to LVDS Isolation CMOS to LVDS		$\begin{aligned} & 350 \\ & 5 \\ & 1.25 \\ & 5 \\ & 13 \end{aligned}$	800	MHz mV mV V mV mA dB dB dB	Termination $=100 \Omega$ differential; default Output Level setting 40 (41) (42) (43) $<2: 1>=01,3.5 \mathrm{~mA}$ termination current Output shorted to GND 100 MHz output with 50 MHz aggressor 100 MHz output with 50 MHz aggressor 100 MHz output with 50 MHz aggressor
CMOS CLOCK OUTPUTS OUT4, OUT5, OUT6, OUT7; Single Ended Output Frequency Output Voltage High (VOH) Output Voltage Low (Vol) Isolation CMOS to CMOS Isolation LVPECL to CMOS Isolation LVDS to CMOS		$\begin{aligned} & 2.7 \\ & 0.4 \end{aligned}$	250	MHz V V dB dB dB	B outputs are inverted; termination $=$ open 5 pF load 100 MHz output with 50 MHz aggressor 100 MHz output with 50 MHz aggressor 100 MHz output with 50 MHz aggressor

TIMING CHARACTERISTICS

Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL Output Rise Time, t_{RP} Output Fall Time, trp		$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	```Termination \(=50 \Omega\) to \(\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}\); default Output level setting 3C (3D) (3E) (3F) \(<3: 2>=10\) 20\% to 80\% 80\% to 20\%```
CLK-TO-LVPECL OUT Propagation Delay, tpecl Divide $=$ Bypass Divide $=2$ - 32 Output Skew, tskp Output Skew, tskP_AB		$\begin{aligned} & 0.65 \\ & 0.65 \\ & 25 \\ & 150 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	CLK1 or CLK2 LVPECL to LVPECL on same part ${ }^{1}$ LVPECL to LVPECL on different parts ${ }^{2}$

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVDS Output Rise Time, trl Output Fall Time, t_{FL}		$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	$\begin{aligned} & \text { Termination }=100 \Omega \text { differential; default } \\ & \text { Output level setting } 40(41)(42)(43) \\ & <2: 1>=01,3.5 \mathrm{~mA} \text { termination current } \\ & 20 \% \text { to } 80 \% \\ & 80 \% \text { to } 20 \% \end{aligned}$
CLK-TO-LVDS OUT Propagation Delay, tıvos Divide $=$ Bypass Divide $=2$ - 32 Output Skew, tskı Output Skew, tskl_AB		$\begin{aligned} & 1.4 \\ & 1.4 \\ & 50 \\ & 200 \end{aligned}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ps } \\ & \text { ps } \end{aligned}$	OUT4 to OUT7 on same part LVDS on different parts
```CLK-TO-LVDS OUT DELAY ADJUST CHANNEL Propagation Delay, tlvosd Divide = Bypass Divide = 2-32 Output Skew, tskld```		$\begin{aligned} & 1.45 \\ & 1.45 \\ & 50 \end{aligned}$	100	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ ps	Delay off OUT5 to OUT6 on same part   OUT5 to OUT6 on same part
CMOS   Output Rise Time, trL Output Fall Time, $\mathrm{t}_{\mathrm{FL}}$		$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B outputs are inverted; termination }=\text { open } \\ & 20 \% \text { to } 80 \% ; \text { CLOAD }=3 \mathrm{pF} \\ & 80 \% \text { to } 20 \% ; \text { C LOAD }=3 \mathrm{pF} \\ & \hline \end{aligned}$
		$\begin{aligned} & 1.4 \\ & 1.4 \\ & 50 \\ & 200 \end{aligned}$	$\begin{aligned} & 150 \\ & 400 \end{aligned}$	ns   ns   ps   ps	$C_{\text {LOAD }}=3 \mathrm{pF}$   CMOS to CMOS on same part CMOS to CMOS on different parts
```CLK-TO-CMOS OUT DELAY ADJUST CHANNEL Propagation Delay, tcmosd Divide = Bypass Divide = 2-32 Output Skew, tskcd```		$\begin{aligned} & 1.45 \\ & 1.45 \\ & 50 \end{aligned}$	150	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ ps	Delay off $C_{\text {LOAD }}=3 \mathrm{pF}$   OUT5 to OUT6 on same part
LVPECL-TO-LVDS OUT Output Skew, $\mathrm{t}_{\text {KKP } \mathrm{L}}$		0.75		ns	Everything the same; different logic LVPECL to LVDS on same part
LVPECL-TO-CMOS OUT Output Skew, tskp_c		0.75		ns	Everything the same; different logic LVPECL to CMOS on same part
LVDS-TO-CMOS OUT Output Skew, tskl_c		100	150	ps	Everything the same; different logic LVDS to CMOS on same part
DELAY ADJUST Shortest Delay Range Zero Scale Full Scale Linearity Longest Delay Range Zero Scale Full Scale Linearity		$\begin{aligned} & 0.3 \\ & 1.0 \\ & \\ & 0.5 \\ & 10 \end{aligned}$		ns ns \%LSB ns ns \%LSB	OUT5 (OUT6); LVDS and CMOS 35h (39h) <5:0> 111111 36h (3Ah) <5:0> 000000 36h (3Ah) <5:0> 111111 $\begin{aligned} & 35 h(39 h)<5: 0>000000 \\ & 36 h(3 A h)<5: 0>000000 \\ & 36 h(3 A h)<5: 0>111111 \end{aligned}$

[^1]
Preliminary Technical Data

CLOCK OUTPUT PHASE NOISE

Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1 TO LVPECL ADDITIVE PHASE NOISE					Distribution section only; does not include PLL or external VCO/VCXO
CLK1 $=622.08 \mathrm{MHz}$, OUTN $=622.08 \mathrm{MHz}$					Input slew rate > $1 \mathrm{~V} / \mathrm{ns}$
Divide Ratio $=1$					
@ 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUTN $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-130		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUTN $=38.88 \mathrm{MHz}$					
Divide Ratio $=16$					
@ 10 Hz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-166		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUTN $=61.44 \mathrm{MHz}$					
Divide Ratio = 8					
@ 10 Hz Offset		-131		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
> 1 MHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUTN $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
@ 10 Hz Offset		-127		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-144		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-157		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUTN $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-144		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-163		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-164		$\mathrm{dBc} / \mathrm{Hz}$	

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1-TO-LVDS ADDITIVE PHASE NOISE					Distribution section only; does not include PLL or external VCO/VCXO Characterization ongoing
CLK1 $=622.08 \mathrm{MHz}$, OUTN $=622.08 \mathrm{MHz}$					
Divide Ratio $=1$					
@ 10 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset				$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUTN $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset				$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUTN $=38.88 \mathrm{MHz}$					
Divide Ratio $=16$					
@ 10 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset				$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUTN $=61.44 \mathrm{MHz}$					
Divide Ratio $=8$					
@ 10 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
> 1 MHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUTN $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
@ 10 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset				$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUTN $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset				$\mathrm{dBc} / \mathrm{Hz}$	

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1 to CMOS ADDITIVE PHASE NOISE					Distribution section only; does not include PLL or external VCO/VCXO
CLK1 $=245.76 \mathrm{MHz}$, OUTN $=245.76 \mathrm{MHz}$					
Divide Ratio = 1					
@ 10 Hz Offset		-117		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-124		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-131		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-141		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-146		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-150		$\mathrm{dBc} / \mathrm{Hz}$	
> 10 MHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUTN $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
@ 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-136		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-144		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-152		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
>10 MHz Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUTN $=78.6432 \mathrm{MHz}$					
Divide Ratio $=1$					
@ 10 Hz Offset		-127		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-151		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 MHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUTN $=39.3216 \mathrm{MHz}$					
Divide Ratio $=2$					
@ 10 Hz Offset		-134		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
@ 1 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
@ 10 kHz Offset		-156		$\mathrm{dBc} / \mathrm{Hz}$	
@ 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	

CLOCK OUTPUT ADDITIVE TIME JITTER ${ }^{1}$

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL or external VCO/VCXO
CLK1 $=622.08 \mathrm{MHz}$, OUT0: $3=622.08 \mathrm{MHz}$		40		fs rms	$\mathrm{BW}=12 \mathrm{kHz}-20 \mathrm{MHz}$
Divide Ratio $=1$					(OC-12)
CLK1 $=622.08 \mathrm{MHz}$, OUT0:3 $=155.52 \mathrm{MHz}$		55		fs rms	$\mathrm{BW}=12 \mathrm{kHz}-20 \mathrm{MHz}$
Divide Ratio $=4$					(OC-3)
CLK1 $=200 \mathrm{MHz}$, OUT0:3 $=100 \mathrm{MHz}$		225		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
Divide Ratio $=2$					
LVDS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL or external VCO/VCXO
CLK1 $=200 \mathrm{MHz}$, OUT4 $=100 \mathrm{MHz}$		275		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz} \text { with } \mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
CMOS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL or external VCO/VCXO
CLK1 $=200 \mathrm{MHz}$, OUT4 $=100 \mathrm{MHz}$		275		fs rms	Calculated from SNR of ADC method; $\mathrm{F}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$

${ }^{1}$ Distribution section only; does not include PLL or external VCO/VCXO.

PLL AND DISTRIBUTION PHASE NOISE AND SPURIOUS

Table 7. PLL and Distribution

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
PHASE NOISE AND SPURIOUS					Depends on VCO/VCXO selection. Characterization ongoing.
Setup No. 1					Measured at LVPECL clock outputs; $\mathrm{ABP}=6 \mathrm{~ns} ; \mathrm{IcP}_{\mathrm{c}}=5 \mathrm{~mA} ; \operatorname{Ref}=30.72 \mathrm{MHz}$
$\begin{aligned} & \text { 245.76 MHz VCXO, FPFD }=1.2288 \mathrm{MHz} ; \mathrm{R}=25, \mathrm{~N}=200 \\ & \text { 245.76 MHz Output } \end{aligned}$					Divide by 1
Phase Noise @ 100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
Spurious				dBC	First and second harmonics of FPFD
61.44 MHz Output					Divide by 4
Phase Noise @100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
Spurious				dBc	First and second harmonics of Fpfd
Setup No. 2					Measured at LVPECL clock outputs; $\mathrm{ABP}=6 \mathrm{~ns} ; \mathrm{IcP}^{2}=5 \mathrm{~mA} ; \operatorname{Ref}=30.72 \mathrm{MHz}$
245.76 MHz VCXO, Fpfd $=30.72 \mathrm{MHz} ; \mathrm{R}=1, \mathrm{~N}=8$					
245.76 MHz Output					Divide by 1
Phase Noise @100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
Spurious				dBc	First and second harmonics of FPFD
61.44 MHz Output					Divide by 4
Phase Noise @100 kHz Offset				$\mathrm{dBc} / \mathrm{Hz}$	
Spurious				dBC	First and second harmonics of $\mathrm{F}_{\text {PFD }}$

SERIAL CONTROL PORT

Table 8.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SDIO, CSB, SCLK Input Logic 1 Voltage Input Logic 0 Voltage Input Capacitance		CMOS Levels		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{pF} \end{aligned}$	
SDIO, SDO Output Logic 1 Voltage Output Logic 0 Voltage		CMOS Levels		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	
CSB, SCLK Input Logic 1 Current Input Logic 0 Current		CMOS Levels		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	CSB and SCLK have $30 \mathrm{k} \Omega$ internal pull-down resistors
TIMING Clock Rate (SCLK, 1/tscik) Pulse-Width High, tpwh Pulse-Width Low, tpw SDIO and CSB to SCLK Setup, tDS SCLK to SDIO Hold, t_{DH} SCLK to Valid SDIO and SDO, tov			$\begin{aligned} & 25 \\ & 24 \\ & 24 \end{aligned}$	MHz ns ns ns ns ns	

FUNCTION PIN

Table 9.

Parameter	Min \quad Typ	Max	Unit
INPUT CHARACTERISTICS		CMOS Levels	Test Conditions/Comments
Logic 1 Voltage Logic 0 Voltage Input Capacitance Logic 1 Current Logic 0 Current		V	
RESET TIMING Pulse-Width Low		pF	
SYNC TIMING Pulse-Width Low Setup Time	1.5	ns	
Hold Time	Clock cycles	Sync single chip; CLK1 or CL2, whichever is being used for distribution Sync multichip; Write CLK1 or CLK2,	
whichever is being used for distribution			
Sync multichip; Write CLK1 or CLK2,			
whichever is being used for distribution			

STATUS PIN

Table 10.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS Output Voltage High (Voн) Output Voltage Low (Vol)				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
MAXIMUM TOGGLE RATE			100	MHz	Applies when PLL mux is set to any divider or counter output, or PFD up/down pulse. Also applies in analog lock detect mode. Usually debug mode only. Beware that spurs may couple to output when this pin is toggling.
ANALOG LOCK DETECT Capacitance		3		pF	On-chip capacitance; used to calculate RC time constant for analog lock detect readback. Use pull-up resistor.

POWER

Table 11.

Parameter	Min Typ	Max	Unit	Test Conditions/Comments	
POWER-UP DEFAULT MODE POWER DISSIPATION		650		mW	Power-up default state; does not include power dissipated in output load resistors.
MAXIMUM POWER DISSIPATION		1050		mW	All functions enabled, all outputs on and terminated, maximum clock rates, and frequencies. Does not include power dissipated in load resistors.
(Pick these conditions.)					

TIMING DIAGRAMS

Figure 2. CLK1/CLK1B to Clock Output Timing, DIV $=1$ Mode

ABSOLUTE MAXIMUM RATINGS

Table 12.

Parameter or Pin	With Respect to	Min	Max	Unit
V_{s}	GND	-0.3	+3.6	V
$V_{\text {cp }}$	GND	-0.3	+6	V
VCP	$V_{\text {s }}$	-0.3		V
REFIN, REFINB				V
RSET	GND			V
CPRSET	GND			V
CLK1. CLK1B, CLK2, CLK2B				V
CLK1	CLK1B			V
CLK2	CLK2B			V
SCLK, SDIO SDO, CSB	GND			V
Outputs 0, 1, 2, 3				V
Outputs 4, 5, 6, 7				V
FUNCTION				V
STATUS				V
Junction Temperature			150	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (10 sec)			300	${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { Stresses above those listed under Absolute Maximum Ratings } \\
& \text { may cause permanent damage to the device. This is a stress } \\
& \text { rating only; functional operation of the device at these or any } \\
& \text { other conditions above those indicated in the operational } \\
& \text { sections of this specification is not implied. Exposure to } \\
& \text { absolute maximum ratings for extended periods may affect } \\
& \text { device reliability. } \\
& \text { THERMAL CHARACTERISTICS }{ }^{1} \\
& \text { Thermal Resistance } \\
& \text { 64-Lead LFCSP } \\
& \theta_{\text {JA }}=24^{\circ} \mathrm{C} / \mathrm{W} \\
& \hline \\
& \text { 'Thermal impedance measurements were taken on a 4-layer board in still air, } \\
& \text { in accordance with EIA/JESD51-7. }
\end{aligned}
$$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. 64-Lead LFCSP Pin Configuration

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

Table 13. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	REFIN	PLL Reference Input.
2	REFINB	Complementary PLL Reference Input.
$\begin{aligned} & 3,7,8,12,22, \\ & 27,32,49,50, \\ & 55,62 \end{aligned}$	GND	Ground.
$\begin{aligned} & 4,9,13,23,26, \\ & 30,31,33,36 \\ & 37,40,41,44, \\ & 45,48,51,52, \\ & 56,59,60,64 \end{aligned}$	VS	Power Supply (3.3 V).
5	VCP	Charge Pump Power Supply. It should be greater than or equal to VS. VCP may be set as high as 5.5 V for VCOs requiring extended tuning range.
6	CP	Charge Pump Output.
10	CLK2	Clock Input Used to Connect External VCO/VCXO to Feedback Divider, N. CLK2 also drives the distribution section of the chip and may be used as a generic clock input when PLL is not used.
11	CLK2B	Complementary Clock Input Used in Conjunction with CLK2.
14	CLK1	Clock Input That Drives Distribution Section of the Chip.
15	CLK1B	Complementary Clock Input Used in Conjunction with CLK1.
16	FUNCTION	Multipurpose Input May Be Programmed as a Reset (RESETB), Sync (SYNCB), or Power-Down (PDB) Pin.
17	STATUS	Output Used to Monitor PLL Status and Sync Status.
18	SCLK	Serial Data Clock.
19	SDIO	Serial Data I/O.
20	SDO	Serial Data Output.
21	CSB	Serial Port Chip Select.
24	OUT7B	Complementary LVDS/Inverted CMOS Output.
25	OUT7	LVDS/CMOS Output.
28	OUT3B	Complementary LVPECL Output.
29	OUT3	LVPECL Output.
34	OUT2B	Complementary LVPECL Output.
35	OUT2	LVPECL Output.
38	OUT6B	Complementary LVDS/Inverted CMOS Output. OUT6 includes a delay block.
39	OUT6	LVDS/CMOS Output. OUT6 includes a delay block.
42	OUT5B	Complementary LVDS/Inverted CMOS Output. OUT5 includes a delay block.
43	OUT5	LVDS/CMOS Output. OUT5 includes a delay block.
46	OUT4B	Complementary LVDS/Inverted CMOS Output.
47	OUT4	LVDS/CMOS Output.
53	OUT1B	Complementary LVPECL Output.
54	OUT1	LVPECL Output.
57	OUTOB	Complementary LVPECL Output.
58	OUTO	LVPECL Output.
61	RSET	Current Set Resistor to Ground. Nominal value $=4.147 \mathrm{k} \Omega$.
63	CPRSET	Charge Pump Current Set Resistor to Ground. Nominal value $=5.1 \mathrm{k} \Omega$.

Note that the exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to ground, GND.

TERMINOLOGY

Phase Jitter and Phase Noise

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0 to 360 degrees for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although there are many causes that can contribute to phase jitter, one major component is due to random noise which is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are $\mathrm{dBc} / \mathrm{Hz}$ at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement the offset from the carrier frequency is also given.

It is also meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs and DACs and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings is seen to vary. In the case of a square wave, the time jitter is seen as a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Since these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the SNR and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

Additive Phase Noise

It is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contribute their own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise.

Additive Time Jitter

It is the amount of time jitter that is attributable just to the device or subsystem being measured. The time jitter of any external oscillators or clock sources has been subtracted. This makes it possible to predict the degree to which the device will impact the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contribute their own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL MODES OF OPERATION

PLL with External VCXO/VCO Followed by Clock Distribution

This is the most common operational mode for the AD9510. An external oscillator (shown as VCO/VCXO) is phase locked to a reference input frequency applied to REFIN. The loop filter is usually a passive design. A VCO or a VCXO may be used. The CLK2 input is connected internally to the feedback divider, N . The CLK2 input provides the feedback path for the PLL. If the $\mathrm{VCO} / \mathrm{VCXO}$ frequency exceeds maximum frequency of the output(s) being used, an appropriate divide ratio must be set in the corresponding divider(s) in the distribution section.

Figure 10. PLL and Clock Distribution Mode

Clock Distribution Only

In this mode, the PLL is not used. A customer can save power by initiating a PLL power-down and by powering down any unused clock channels.

In distribution mode, both CLK1 and CLK2 inputs are available for distribution to outputs via a low jitter multiplexer (MUX).

Figure 11. Clock Distribution Mode
PLL with External VCO and Band-Pass Filter Followed by Clock Distribution
An external band-pass filter may be used to possibly improve the phase noise and spurious characteristics of the PLL output. This option is most appropriate when the desire is to optimize cost by choosing a less expensive VCO combined with a moderately priced filter. Note that the BPF is shown outside of the VCO to N divider path, with the BP filter outputs routed to CLK1.

Figure 12. AD9510 with VCO and BPF Filter

Figure 13. Functional Block Diagram

FUNCTION DESCRIPTION

OVERALL

Figure 13 shows a block diagram of the AD9510. The chip combines a programmable PLL core with a configurable clock distribution system. A complete PLL requires the addition of a suitable external VCO (or VCXO) and loop filter. This PLL can be used to lock to a reference input signal and produce an output that is related to the input frequency by the ratio defined by the programmable R and N dividers. The PLL offers some jitter clean up of the external reference signal, depending on the loop bandwidth and the phase noise performance of the VCO (VCXO).

The output from the VCO (VCXO) can be applied to the clock distribution section of the chip, where it can be divided by any integer value from 1 to 32 . The duty cycle and relative phase of the outputs can be selected. There are four LVPECL outputs, (OUT0, OUT1, OUT2, and OUT3) and four outputs that can be selected as either LVDS or CMOS level outputs (OUT4, OUT5, OUT6, and OUT7). Two of these outputs (OUT5, OUT6) can also make use of a variable delay block.

Alternatively, the clock distribution section can be driven directly by an external clock signal, and the PLL can be powered off. Whenever the clock distribution section is used alone, there is no clock clean-up. The jitter of the input clock signal is passed along directly to the distribution section and may dominate at the clock outputs.

PLL OPERATION

The AD9510 has a complete PLL core on-chip, requiring only an external loop filter and VCO/VCXO. This PLL is based on the ADF4106, a PLL noted for its superb low phase noise performance. The operation of the AD9510 PLL is nearly identical to that of the ADF4106, offering an advantage to those with experience with the ADF series of PLLs. Differences include the addition of differential inputs at REFIN and CLK2, a different control register architecture, and the prescaler has been changed to allow N as low as 1 . The AD9510 PLL also implements the digital lock detect feature somewhat differently than does the ADF4106 offering improved functionality at higher PFD rates. Refer to Register Map Description for details.

The PLL section can be used entirely separately from the distribution system, if so desired.

PLL REFERENCE INPUT

The REFIN and REFINB pins can be driven differentially or single-ended. These pins are internally self-biased, so they should always be capacitively coupled. This also applies to the unused side when single-ended input is used.

PLL REFERENCE DIVIDER

The REFIN/REFINB inputs are routed to reference divider, R , which is a 14-bit counter. R may be programmed to any value from 0 to 16383 via its control register. The output of the R divider goes to one of the phase/frequency detector inputs. The maximum allowable frequency into the phase/frequency detector (PFD) must not be exceeded. This means that the REFIN frequency divided by R must be less than the maximum allowable PFD frequency.

VCO/VCXO CLOCK INPUT

The CLK2 differential input may be used as a second distribution input, or it may be used to connect an external VCO or VCXO to the PLL. Only the CLK2 input port has a connection to the PLL N divider. This input can receive up to 1.5 GHz . These inputs are internally self-biased and must be capacitively coupled.

CLK1 is electrically identical, but normally feeds the distribution section instead. See Figure 16 for the equivalent circuit of CLK1/CLK2.

VCO/VCXO FEEDBACK DIVIDER

The N divider is a combination of a prescaler and two counters, A and B. Although the AD9510's PLL is similar to the ADF4106, the AD9510 has a redesigned prescaler that allows for lower values of N . The prescaler has both a dual modulus (DM) mode and a fixed divide (FD) mode. The AD9510 prescaler modes are shown in Table 14.

Table 14. PLL Prescaler Modes

Mode (FD $=$ Fixed Divide; DM $=$ Dual Modulus)	Divide $\mathbf{B y}$
FD	1
FD	2
$\mathrm{P}=2 \mathrm{DM}$	$\mathrm{P} / \mathrm{P}+1=2 / 3$
$\mathrm{P}=4 \mathrm{DM}$	$\mathrm{P} / \mathrm{P}+1=4 / 5$
$\mathrm{P}=8 \mathrm{DM}$	$\mathrm{P} / \mathrm{P}+1=8 / 9$
$\mathrm{P}=16 \mathrm{DM}$	$\mathrm{P} / \mathrm{P}+1=16 / 17$
$\mathrm{P}=32 \mathrm{DM}$	$\mathrm{P} / \mathrm{P}+1=32 / 33$
FD	3

When using the prescaler in a FD mode, the A counter is not used, and the B counter may need to be bypassed. The DM prescaler modes set some upper limits on the frequency, which can be applied to CLK2 . These are shown in Table 15.

Table 15. Frequency Limits per Prescaler Mode

Mode (DM = Dual Modulus)	CLK2
$\mathrm{P}=2 \mathrm{DM}(2 / 3)$	$<500 \mathrm{MHz}$
$\mathrm{P}=4 \mathrm{DM}(4 / 5)$	$<750 \mathrm{MHz}$
$\mathrm{P}=8 \mathrm{DM}(8 / 9)$	$<1.5 \mathrm{GHz}$
$\mathrm{P}=16 \mathrm{DM}$	$<1.5 \mathrm{GHz}$
$\mathrm{P}=32 \mathrm{DM}$	$<1.5 \mathrm{GHz}$

A AND B COUNTERS

The AD9510 B Counter has a bypass mode $(\mathrm{B}=1)$ that is not available on the ADF4106. The B counter bypass mode is only valid when using the prescaler in a FD mode. The B counter is bypassed by writing 1 to the B counter bypass bit in the register map. Note that the A counter is not used when prescaler is in FD mode.

Note also that the A / B Counters have their own reset bit that is primarily intended for test. A and B counters can also be reset using the shared R, A, and B counters reset bit.

SETTING VALUES FOR P, A, B, AND R

When operating the AD9510 in a dual-modulus mode, the input reference frequency, $\mathrm{F}_{\text {REF }}$, is related to the VCO output frequency, Fvco.

$$
F_{V C O}=\left(F_{R E F} / R\right) \times(P B+A)=F_{R E F} \times N / R
$$

When operating the prescaler in a fixed divide mode the A counter is not used and the equation simplifies to

$$
F_{V C O}=\left(F_{R E F} / R\right) \times(P B)=F_{R E F} \times N / R
$$

By using combinations of dual modulus and fixed divide modes, the AD9510 can achieve values of N all the way down to $\mathrm{N}=1$. Table 16 shows how a 10 MHz reference input may be locked to any integer multiple of N . Note that the same value of N may be derived in different ways, as illustrated by the case of $\mathrm{N}=12$.

Table 16. $\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{R}$ - Smallest Values for N

F $_{\text {REF }}$	R	P	A	B	N	Fvco	Mode	Notes
10	1	1	X	1	1	10	FD	$\mathrm{P}=1, \mathrm{~B}=1$ (Bypassed)
10	1	2	X	1	2	20	FD	$\mathrm{P}=2, \mathrm{~B}=1$ (Bypassed)
10	1	1	X	3	3	30	FD	$\mathrm{P}=1, \mathrm{~B}=3$
10	1	1	X	4	4	40	FD	$\mathrm{P}=1, \mathrm{~B}=4$
10	1	1	X	5	5	50	FD	$\mathrm{P}=1, \mathrm{~B}=5$
10	1	2	X	3	6	60	FD	$\mathrm{P}=2, \mathrm{~B}=3$
10	1	2	0	3	6	60	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=0, \mathrm{~B}=3$
10	1	2	1	3	7	70	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=1, \mathrm{~B}=3$
10	1	2	2	3	8	80	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=2, \mathrm{~B}=3$
10	1	2	1	4	9	90	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=1, \mathrm{~B}=4$
10	1	2	X	5	10	100	FD	$\mathrm{P}=2, \mathrm{~B}=5$
10	1	2	0	5	10	100	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=0, \mathrm{~B}=5$
10	1	2	1	5	11	110	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=1, \mathrm{~B}=5$
10	1	2	X	6	12	120	FD	$\mathrm{P}=2, \mathrm{~B}=6$
10	1	2	0	6	12	120	DM	$\mathrm{P} / \mathrm{P}+1=2 / 3, \mathrm{~A}=0, \mathrm{~B}=6$
10	1	4	0	3	12	120	DM	$\mathrm{P} / \mathrm{P}+1=4 / 5, \mathrm{~A}=0, \mathrm{~B}=3$
10	1	4	1	3	13	130	DM	$\mathrm{P} / \mathrm{P}+1=4 / 5, \mathrm{~A}=1, \mathrm{~B}=3$

PHASE FREQUENCY DETECTOR (PFD) AND CHARGE PUMP

The PFD takes inputs from the R counter and N counter ($\mathrm{N}=\mathrm{BP}+\mathrm{A})$ and produces an output proportional to the phase and frequency difference between them. Figure 14 is a simplified schematic. The PFD includes a programmable delay element that controls the width of the antibacklash pulse. This pulse ensures that there is no dead zone in the PFD transfer function and minimizes phase noise and reference spurs. Two bits in Register 0D $<1: 0>$ control the width of the pulse.

Figure 14. PFD Simplified Schematic and Timing (In Lock)

STATUS PIN

The output multiplexer on the AD9510 allows access to various internal points on the chip. The state of the STATUS pin is controlled by Register $08<5: 2>$. Figure 15 shows the STATUS pin section in block diagram form.

Lock Detect

The STATUS pin can be programmed for two types of lock detect: digital and analog.

See Table $20 \mathrm{OD}<5>$ for the description of this function.
The N-channel, open-drain, analog lock detect should be operated with an external pull-up resistor of $30 \mathrm{k} \Omega$ nominal. When lock is detected, the output is high with narrow, low going pulses.

CLK1 CLOCK INPUT

CLK1 is the distribution only clock input. This clock input is selected by default on power-up. It is usable for inputs up to 1500 MHz .

CLK2 is electrically identical but feeds the PLL N divider as well as being selectable as the input for the distribution section through the clock select MUX.

If the distribution section is being used only, it is recommended that the unselected clock input be powered down in order to eliminate any possibility of unwanted crosstalk between the selected clock input and the unselected clock input.

Figure 16. CLK1, CLK2 Equivalent Input Circuit

SERIAL CONTROL PORT

The AD9510 serial control port is a flexible, synchronous, serial communications port that allows an easy interface with many industry-standard microcontrollers and microprocessors. The AD9510 serial control port is compatible with most synchronous transfer formats, including both the Motorola SPI ${ }^{\circ}$ and Intel ${ }^{\circ}$ SSR protocols. The serial control port allows read/write access to all registers that configure the AD9510. Single or multiple byte transfers are supported, as well as MSB first or LSB first transfer formats. The AD9510 serial control port can be configured for single pin I/O (SDIO only) or two unidirectional pins for in/out (SDIO/SDO).

SERIAL CONTROL PORT PIN DESCRIPTIONS

SCLK (serial clock) is the serial shift clock. This pin is an input. SCLK is used to synchronize serial control port reads and writes. Write data bits are registered on the rising edge of this clock, and read data bits are registered on the falling edge. This pin is internally pulled down by a $30 \mathrm{k} \Omega$ resistor to ground.

SDIO (serial data input/output) is a dual-purpose pin and acts as either an input only in 4-wire mode or as an input/output in 3-wire mode. The AD9510 defaults to 3-wire mode (single pin I/O-SDIO only). Four-wire mode (two unidirectional pins for I/O - SDIO/SDO) may be enabled by setting 1 into the SDO enable register at Address 00h, Bit <7>.

SDO (serial data out) is used in the 4 -wire mode only as a separate output pin for readback data. The AD9510 defaults to 3 -wire mode. Four-wire mode may be enabled by setting 1 into the SDO enable register at Address 00h, Bit <7>.

CSB (chip select bar) is an active low control that gates the read and write cycles. When CSB is high, SDO and SDIO are in a high impedance state. This pin is internally pulled down by a $30 \mathrm{k} \Omega$ resistor to ground.

Figure 17. Serial Control Port

GENERAL OPERATION OF SERIAL CONTROL PORT

There are three phases to a communication cycle with the AD9510. Phase 1 is the instruction cycle, which is the writing of a 16 -bit instruction word into the AD9510, coincident with the first 16 SCLK rising edges. The instruction word provides the AD9510 serial control port with information regarding the data transfer cycle (Phase 2) of the communication cycle. The Phase 1 instruction word defines whether the upcoming data transfer is read or write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer.

Write

If the instruction word (Phase 1) is for a write operation ($\mathrm{I} 15=0$), then Phase 2 is the transfer of data into the serial control port buffer of the AD9510. The length of the transfer (1, 2,3 , or 4 data bytes) is indicated by 2 bits (W1:W0) in the instruction byte. Multibyte data transfer is the preferred method. Single byte data transfers are useful to reduce CPU overhead when only one byte of data needs to be loaded. CSB can be raised after each sequence of 8 bits (except the last byte) to stall the bus. The serial transfer resumes when CSB is lowered. Stalling on nonbyte boundaries resets the serial control port.

Since data is written into a serial control port buffer area, not directly into the AD9510's actual control registers, a Phase 3 operation is needed in order to transfer the serial control port buffer contents to the actual control registers of the AD9510, thereby causing them to take effect. Phase 3 consists of writing a high bit (one) to Address 5Ah, Bit $<0>$. This update bit is selfclearing (it is not required to write a 0 to it in order to clear it). Since any number of bytes of data may be changed before issuing an update, the update simultaneously enables all register changes since any previous update.

Read

If the instruction word (Phase 1) is for a read operation ($\mathrm{I} 15=1$), the next $\mathrm{N} \times 8$ SCLK cycles clock out the data from the address specified in the instruction word, where N is 1 to 4 as determined by W1:W0. The readback data is valid on the falling edge of SCLK.

The default mode of the AD9510 serial control port is 3-wire mode; therefore, the requested data normally appears on the SDIO pin. It is possible to set the AD9510 to 4 -wire mode by setting 1 into the SDO enable register at Address 00h, Bit <7>. In 4 -wire mode, the readback data appears on the SDO pin.

A readback request reads the data that is in the serial control port buffer area not the active data in the AD9510's actual control registers.

Figure 18. Relationship between Serial Control Port Register Buffers and Control Registers of the AD9510

The AD9510 uses Addresses 00h to 5Ah. Although the AD9510 serial control port allows for both 8-bit and 16-bit instructions, the 8 -bit instruction mode provides access only to five address bits (A4 to A0), which restricts its use to the address space 00 h to 01F. The AD9510 defaults to 16-bit instruction mode on power-up. The 8-bit instruction mode (although defined for this serial control port) is not useful for the AD9510; therefore, it is not discussed in this data sheet.

THE INSTRUCTION WORD (16 BITS)

The MSB of the instruction word is $\mathrm{R} / \overline{\mathrm{W}}$, which indicates whether the instruction will be a read or a write. The next two bits, W1:W0, indicate the length of the transfer in bytes. The final 13 bits are the address (A12:A0) at which to begin the read or write operation. For a write, the instruction word is followed by the number of bytes of data indicated by Bits W1:W0, which is interpreted according to Table 17.
Table 17. Byte Transfer Count

W1	W0	Bytes to Transfer
0	0	1
0	1	2
1	0	3
1	1	4

A12:A0: These 13 bits select the address within the register map which is written to or read from during the data transfer portion of the communications cycle. For multibyte transfers, this address is the starting byte address. In MSB first mode, subsequent bytes increment the address.

MSB/LSB FIRST TRANSFERS

The AD9510 instruction word and byte data may be MSB first or LSB first. The default for the AD9510 is MSB first. The LSB first mode may be set by writing 1 to Address $00 \mathrm{~h}, \mathrm{Bit}\langle 6\rangle$. This takes effect immediately (since it only affects the operation of the serial control port) and does not require that an update be executed. Immediately after the LSB first bit is set, all serial control port operations are changed to LSB first order.

When MSB first mode is active, the instruction and data bytes must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes must follow in order from high address to low address. In MSB first mode, the serial control port internal byte address generator decrements for each data byte of the multibyte transfer cycle.

When LSB_First = 1 (LSB first), the instruction and data bytes must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction byte that includes the register address of the least significant data byte followed by multiple data bytes. The serial control port internal byte address generator increments for each byte of the multibyte transfer cycle.

The AD9510 serial control port data address decrements from the data address written toward 0×00 for multibyte I/O operations if the MSB first mode is active. The serial control port address increments from the data address written toward $0 \times 1 \mathrm{~F}$ for multibyte I/O operations if the LSB first mode is active.

Table 18. Serial Control Port, 16-Bit Instruction Word, MSB First MSB

$\mathbf{I 1 5}$	$\mathbf{I 1 4}$	$\mathbf{I 1 3}$	$\mathbf{I 1 2}$	$\mathbf{I 1 1}$	$\mathbf{I 1 0}$	$\mathbf{I 9}$	$\mathbf{I 8}$	$\mathbf{I 7}$	$\mathbf{I 6}$	$\mathbf{I 5}$	$\mathbf{I 4}$	$\mathbf{I 3}$	$\mathbf{I 2}$	$\mathbf{I 1}$	$\mathbf{I 0}$
$\mathrm{R} / \overline{\mathrm{W}}$	W 1	W 0	A 12	A11	A 10	A9	A8	A 7	A 6	A5	A4	A3	A 2	A 1	A 0

Figure 19. Serial Control Port Write—MSB First, 16-Bit Instruction, 2 Bytes Data

Figure 20. Serial Control Port Read—MSB First, 16-Bit Instruction, 4 Bytes Data

Figure 21. Serial Control Port Write-MSB First, 16-Bit Instruction, Timing Measurements

Figure 22. Timing Diagram for Serial Control Port Register Read

Figure 23. Serial Control Port Write—LSB First, 16-Bit Instruction, 2 Bytes Data

REGISTER MAP AND DESCRIPTION

SUMMARY TABLE

Table 19. AD9510 Register Map

Addr (Hex)	Parameter Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$	Def. Value (Hex)	Notes
00	Serial Control Port Configuration	SDO Active	LSB First	Soft Reset	Long_Ins	Long_Ins	Soft Reset	$\begin{aligned} & \text { LSB } \\ & \text { First } \end{aligned}$	SDO Active	10	$\begin{aligned} & <7: 4> \\ & \text { Mirror } \\ & <3: 0> \end{aligned}$
01		Blank									
02		Reserved									
03		Blank									
	PLL										PLL Starts in PowerDown
04	A Counter	Bla				6-Bit A Cou	ter <5:0>			00	N Divider (A)
05	B Counter	Blank			13-Bit B Counter Bits (MSB) 12:8 <4:0>					00	N Divider (B)
06	B Counter	13-Bit B Counter Bits 7:0 (LSB) <7:0>								00	N Divider (B)
07	PLL 1	Reserved	LOR lock_del <6:5>		LOR Mode <4:3>		LOR Enable	Test	Test	00	
08	PLL 2	Reserved	$\begin{gathered} \text { PFD } \\ \text { Polarity } \end{gathered}$	PLL Mux Select <5:2>				CP Mode <1:0>		00	
09	PLL 3	Reserved	CP Current <6:4>			Reserved	Reset R Counter	Reset N Counter	Reset All Counters	00	
OA	PLL 4	Reserved	B Bypass	Reserved	Prescaler P <4:2>			Power-Down <1:0>		01	N Divider (P)
OB	R Divider	Blank		14-Bit R Divider Bits (MSB) 13:8<5:0>						00	R Divider
OC	R Divider	14-Bit R Divider Bits (MSB) 13:8<5:0>								00	R Divider
OD	PLL 5	Reserved	Digital Lock Det. Enable	Digital Lock Det. Window	Reserved			Antibacklash PulseWidth <1:0>		00	
$\begin{array}{\|l} \hline \mathrm{OE}- \\ 33 \end{array}$		Blank									
	FINE DELAY ADJUST										Fine Delays Bypassed
34	Delay Bypass 5	Blank							Bypass	01	Bypass Delay
35	Delay FullScale 5	Blank		Ramp Capacitor <5:3>			Ramp Current <2:0>			00	Max. Delay Full-Scale
36	Delay Word 5	Blank		6-Bit Delay Word <5:0>						00	Min. Delay Value
37	Delay FS Adjust 5	Blank					I Adjust for Process <2:0>			04	Midpoint
38	Delay Bypass 6	Blank							Bypass	01	Bypass Delay
39	Delay FullScale 6	Blank		Ramp Capacitor <5:3>			Ramp Current <2:0>			00	Max. Delay Full-Scale
3A	Delay Word 6	Blank		6-Bit Delay Word <5:0>						00	Min. Delay Value

AD9510

Addr (Hex)	Parameter Name	$\begin{aligned} & \text { Bit } 7 \\ & \text { (MSB) } \end{aligned}$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$	Def. Value (Hex)	Notes
57	Divider 7	Bypass	No Sync	Force	Start H/L	Phase Offset <3:0>				00	Phase $=0$
	FUNCTION										
58	FUNCTION Pin and Sync	Reserved	Set FU	CTION Pin	PD Sync	$\begin{aligned} & \hline \text { PD All } \\ & \text { Ref. } \end{aligned}$	$\begin{aligned} & \text { Sync } \\ & \text { Reg. } \end{aligned}$	Sync Select	Sync Enable	00	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { Pin }= \\ & \text { RESETB } \end{aligned}$
59		Reserved									
5A	Update Registers	Blank							Update Registers	00	SelfClearing Bit
	END										

REGISTER MAP DESCRIPTION

The is a detailed description of each of the control register functions. The registers are listed by hexadecimal address. Reference to a specific bit or range of bits within a register is accomplished by the use of angle brackets. For example, $<3>$ refers to Bit 3 , while $<5: 2>$ refers to the range of bits from Bit 5 through Bit 2. Table 20 describes the functionality of the control registers on a bit-by-bit basis. For a more concise (but less descriptive) table see Table 19.
Table 20. AD9510 Register Descriptions

Preliminary Technical Data

AD9510

Reg. Addr. (Hex)	Bit(s)	Name	Description			
			<2>	<1>	Current (mA)	Termination ($\mathbf{\Omega}$)
			$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1.75 3.5 (Default) 5.25 7	$\begin{aligned} & 100 \\ & 100 \\ & 50 \\ & 50 \end{aligned}$
$\begin{aligned} & \hline 40 \\ & (41) \\ & (42) \\ & (43) \end{aligned}$	<3>	LVDS/CMOS Select OUT4 (OUT5) (OUT6) (OUT7)	$\begin{aligned} & 0=\text { LVDS (default). } \\ & 1=\text { CMOS. } \end{aligned}$			
40 (41) (42) (43)	<4>	Inverted CMOS Driver OUT4 (OUT5) (OUT6) (OUT7)	$\begin{aligned} & \text { Affects output only when in CMOS mode. } \\ & 0=\text { disable inverted CMOS driver (default). } \\ & 1 \text { = enable inverted CMOS driver. } \end{aligned}$			
$\begin{array}{\|l\|} \hline 40 \\ (41) \\ (42) \\ (43) \end{array}$	<7:5>		Reserved or not used.			
44	<7:0>		Reserved or not used.			
45	<0>	Clock Select	0: CLK2 drives distribution section. 1: CLK1 drives distribution section (default).			
45	<1>	CLK1 Power-Down	1 = CLK1 input is powered down (default = 0).			
45	<2>	CLK2 Power-Down	1 = CLK2 input is powered down (default = 0).			
45	<3>	Prescaler Clock PowerDown	1 = shut down clock signal to PLL prescaler (default = 0).			
45	<4>	REFIN Power-Down	1 = power-down REFIN (default = 0).			
45	<5>	All Clock Inputs PowerDown	1 = power-down CLK1 and CLK2 inputs and associated bias and internal clock tree; (default = 0).			
45	<7:6>		Reserved or not used.			
46	<7:0>		Reserved or not used.			
47	<7:0>		Reserved or not used.			
48 (4A) (4C) (4E) (50) (52) (54) (56)	<3:0>	Divider High OUT0 (OUT1) (OUT2) (OUT3) (OUT4) (OUT5) (OUT6) (OUT7)	Number of clock cycles divider output stays high.			

Reg. Addr. (Hex)	Bit(s)	Name	Description
48 (4A) (4C) (4E) (50) (52) (54) (56)	<7:4>	Divider Low OUTO (OUT1) (OUT2) (OUT3) (OUT4) (OUT5) (OUT6) (OUT7)	Number of clock cycles divider output stays low.
49 (4B) (4D) (4F) (51) (53) (55) (57)	<3:0>	Phase Offset OUTO (OUT1) (OUT2) (OUT3) (OUT4) (OUT5) (OUT6) (OUT7)	Phase offset (default = 0000).
49 (4B) (4D) (4F) (51) (53) (55) (57)	<4>	Start OUT0 (OUT1) (OUT2) (OUT3) (OUT4) (OUT5) (OUT6) (OUT7)	Selects start high or start low. (Default = 0).
49 (4B) (4D) (4F) (51) (53) (55) (57)	<5>	Force OUT0 (OUT1) (OUT2) (OUT3) (OUT4) (OUT5) (OUT6) (OUT7)	Forces individual outputs to the state specified in start (above). This function requires that Nosync (below) also be set. (Default = 0).
49 (4B) (4D) (4F) (51) (53) (55) (57)	<6>	Nosync OUT0 (OUT1) (OUT2) (OUT3) (OUT4) (OUT5) (OUT6) (OUT7)	Ignore chip-level sync signal (default $=0$).

APPLICATIONS

USING THE AD9510 OUTPUTS FOR ADC CLOCK APPLICATIONS

Any high speed analog-to-digital converter (ADC) is extremely sensitive to the quality of the sampling clock provided by the user. An ADC can be thought of as a sampling mixer; and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the A/D output. Clock integrity requirements scale with the analog input frequency and resolution, with higher analog input frequency applications at $>=14$-bit resolution being the most stringent. The theoretical SNR of an ADC is limited by the ADC resolution and the jitter on the sampling clock. Considering an ideal ADC of infinite resolution where the step size and quantization error can be ignored, the available SNR is can be expressed approximately by

$$
S N R=20 \times \log \left[\frac{1}{2 \pi f t_{J}}\right]
$$

where f is the highest analog frequency being digitized, and t_{j} is the rms jitter on the sampling clock. The figure below shows required sampling clock jitter as function of analog frequency and effective number of bits (ENOB)

Figure 24. ENOB and SNR vs. Analog Input Frequency
(See Application Note AN-501 at www.analog.com for more information).

Many high performance ADC's feature differential clock inputs to simplify the task of providing the required low jitter clock on a noisy PCB. (Distributing a single-ended clock on a noisy PCB can result in coupled noise on the sample clock. Differential distribution has inherent common-mode rejection that can provide superior clock performance in a noisy environment.) The AD9510 features both LVPECL and LVDS outputs that provide differential clock outputs, which enable clock solutions that maximize converter SNR performance. The input requirements of the ADC (differential or single-ended, logic level, termination) should be considered when selecting the best clocking/converter solution.

CMOS CLOCK DISTRIBUTION

The AD9510 provides four clock outputs (OUT4 to OUT7) which are selectable as either CMOS or LVDS levels. When selected as CMOS, these outputs provide a way to drive devices requiring CMOS level logic at their clock inputs. Due to factors inherent to CMOS logic, the jitter performance of these outputs cannot equal that of the LVPECL and LVDS outputs. However, for many clocking needs within a system, CMOS clock levels are appropriate.

Whenever single-ended CMOS clocking is used, some of the following general guidelines should be followed.

Point-to-point nets should be designed such that a driver only has one receiver on the net, if possible. This allows for simple termination schemes and minimize ringing due to possible mismatched impedances on the net. Series termination at the source is generally required to provide transmission line matching and/or to reduce current transients at the driver. The value of the resistor is dependent on board design and timing requirements (typically 10Ω to 100Ω is used). CMOS outputs are also limited in terms of the capacitive load or trace length that they can drive, typically trace lengths less than 3 inches are recommended to preserve signal rise/fall times and preserve signal integrity. Simulation results for the AD9510 CMOS outputs with a 1 -inch and 3 -inch trace load are shown in Figure 26. In this example, the series resistor is 10Ω and the trace impedance is 60Ω. Signal integrity, in this example, has started to degrade already at a 3-inch trace length.

Figure 25. Series Termination of CMOS Output

Figure 26. CMOS Output Waveforms
Termination at the far end of the PCB trace is a second option. The CMOS outputs of the AD9510 do not supply enough current to provide a full voltage swing with a low impedance resistive, far-end termination, as shown in Figure 28. The far end termination network should match the PCB trace impedance and provide the desired switching point. The reduced signal swing may still meet receiver input requirements in some applications. This can be useful when driving long trace lengths on less critical nets.

Figure 27. CMOS Output with Far-End Termination

Figure 28. Far-End Termination of CMOS Output Waveform

Because of the limitations of single-ended CMOS clocking, consider using differential outputs when driving high speed signals over long traces. The AD9510 offers both LVPECL and LVDS outputs that are better suited for driving long traces where the inherent noise immunity of differential signaling provides superior performance for clocking converters.

LVPECL CLOCK DISTRIBUTION

The low voltage positive emitter coupled logic (LVPECL) outputs of the AD9510 provide the lowest jitter clock signals available from the AD9510. The LVPECL outputs (because they are open emitter) require a dc termination to bias the output transistors. A simplified equivalent circuit in Figure 29 shows the LVPECL output stage.

Figure 29. Simplified LVPECL Output Stage
In most applications, a standard LVPECL far-end termination is recommended, as shown in Figure 30. The resistor network is designed to match the transmission line impedance (50Ω) and the desired switching threshold (1.3 V). Figure 32 shows a typical LVPECL clock waveform.

Figure 30. LVPECL Far-End Termination

Figure 31 LVPECL with Parallel Transmission Line

Figure 32. Typical LVPECL Outputs

LVDS CLOCK DISTRIBUTION

Low voltage differential signaling (LVDS) is a second differential output option for the AD9510. LVDS provides clock signals with jitter performance nearly as good as that obtainable from LVPECL, and better than CMOS. LVDS uses a currentmode output stage with several user-selectable current levels. A 3.5 mA output current yields 350 mV output swing across a standard LVDS output termination of 100Ω, meeting ANSI 644 requirements.

A recommended termination circuit is shown for the LVDS outputs in Figure 33.

Figure 33. LVDS Output Termination

A typical LVDS output waveform is shown in Figure 34.
(See Application Note AN-586 at www.analog.com for more information on LVDS).

Figure 34. Typical LVDS Output Waveforms
POWER AND GROUNDING CONSIDERATIONS, AND POWER SUPPLY REJECTION
Many applications seek high speed and performance under less than ideal operating conditions. In these application circuits, the implementation and construction of the PCB is as important as the circuit design. Proper RF techniques must be used for device selection, placement, and routing, as well as power supply bypassing and grounding to ensure optimum performance.

Figure 35. Differential LC Filter for Single 3.3V Applications

OUTLINE DIMENSIONS

Figure 36. 64-Lead Frame Chip Scale Package [LFCSP]
$9 \mathrm{~mm} \times 9 \mathrm{~mm}$ Body (CP-64-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
AD9510	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64-Lead Chip Scale Package (LFCSP) Evaluation Board	CP-64-1
AD9510PCB			

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Defined as the worst-case difference between any two similar delay paths within a single device operating at the same voltage and temperature.
 ${ }^{2}$ Defined as the absolute worst-case difference between any two delay paths on any two devices operating at the same voltage and temperature. Part-to-part skew is the total skew difference; pin-to-pin skew + part-to-part skew.

