**IECQ-CECC** 

COMPONENT

QC 88000-C004

**ISSUE 1** 

### SPECIFICATION

March 2007

### Component Specification For Ceramic Hermetically Sealed High Speed Logic Gate High CMR Transistor Optocouplers



Up-to-date lists and bibliographical references of IEQC-CECC publications may be downloaded from www.iecq.org

Further copies of this document may be obtained from:

#### IEC

International Electrotechnical Commission Commission Electrotechnique Internationale

#### Box 131, rue de Varembé, CH 1211 Geneva 20, Switzerland

For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

#### FOREWORD

The IECQ Quality Assessment System for Electronic Components (IECQ) is composed of those member countries of the International Electrotechnical Commission (IEC) who wish to take part in a harmonized system for electronic components of assessed quality. IECQ is also known in some European member countries as IECQ-CECC.

The object of the System is to facilitate international trade by the harmonization of the specifications and quality assessment procedures for electronic components, and by the grant of an internationally recognised Mark, or Certificate of Conformity. The components produced or services provided under the system are thereby acceptable in all member countries without further testing.

This Component Specification is based upon the requirements of IEC Publication QC 001002-2, and has been prepared by:

Isocom Ltd Hutton Close Crowther Industrial Estate Washington Tyne and Wear NE38 0AH

Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

and published under the authority of:

BSI Product Services Maylands Avenue Hemel Hempstead Hertfordshire HP2 4SQ United Kingdom

#### AMENDMENT RECORD

No previous issue.

#### REQUIREMENTS

The requirements for IECQ-CECC Component Specifications as detailed in QC 001002-2 Amendment 1 clause 5.4 are satisfied by the following data sheet.

It should note that IECQ-CECC are not responsible for manufacturers declarations made in data sheets which fall outside the limits of approved detailed in IECQ-CECC certificates.

This Component Specification is intended for use with applicable IECQ-CECC Assessment Specifications. Eg: QC 88000-A001

For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

## <u>Ceramic Hermetically Sealed High Speed Logic Gate</u> <u>High CMR Transistor Optocouplers</u>

- 6N134
- **CD650**
- CD651
- CH350

### **Features**

- Release to IECQ-CECC
- Hermetically Sealed
- High Density Packaging
- 1500V DC withstand Test Voltage
- Low Input Requirements
- High Current Transfer Ratio

- CS600
- CSM169
- CSM1600
- MC600

### **Applications**

- Military, high reliability system
- Medical instruments
- Mos, Cmos Applications
- Logic Interfacing
- Data Transmission
- Transportation

### **Description**

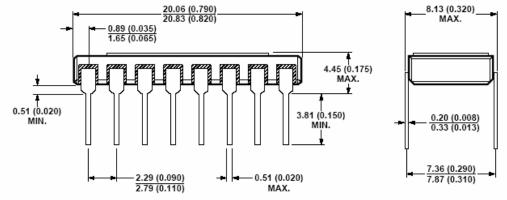
These devices are single, dual and quad, hermetically sealed optocouplers. The products are capable of operation and storage over the full military and space temperature range. Each channel is composed of a light emitting diode, optically coupled to an integrated high gain photon detector. The high gain output features an open collector output providing both lower saturation voltage and higher signalling speed. Package styles for these devices include 8 pin, 16 pin, 16 pin flat pack, leadless 6 pin and hybrid 5 pin, with surface mount, butt cut and gull wing options available.

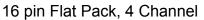
The same electrical die, assembly processes and materials are used for each channel of each device shown below. Therefore absolute maximum ratings, recommended operating conditions, electrical specifications and performance characteristics are identical for all units. Any exceptions, due to packaging variations and limitations, are as noted.

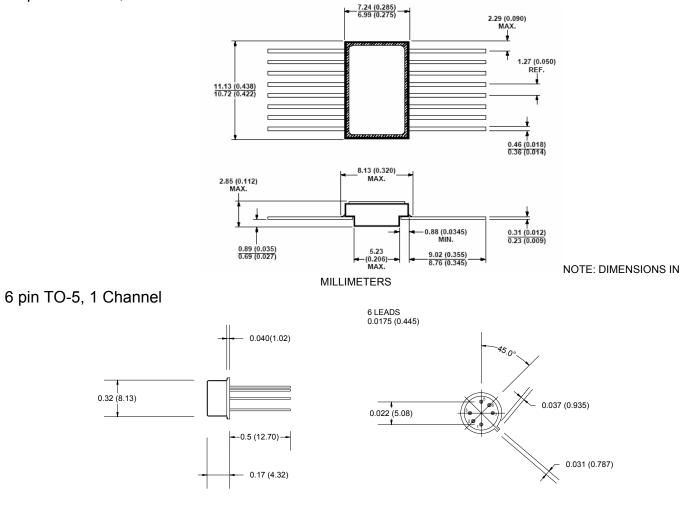
For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

## **Selection Guide Package Styles and Configuration Options**

| Package                            | 16 pin DIP | 8 pin DIP                  | 6 pin DIP  | 16 pin<br>Flat Pack | 6 Pad LCCC | 6 pin<br>Metal Can<br>TO-5 |
|------------------------------------|------------|----------------------------|------------|---------------------|------------|----------------------------|
| Lead Style                         |            |                            |            |                     |            |                            |
| Channels                           | 2          | 1/2                        | 1          | 4                   | 1          | 1                          |
| Common Channel Wiring              |            |                            |            |                     |            |                            |
| Isocom Part Numbers<br>and Options |            |                            |            |                     |            |                            |
|                                    | 6N134      | CS600                      |            |                     |            | MC600                      |
| Commercial                         |            | CD650/651                  | CH350      | CSM169              | CSM1600    |                            |
|                                    | 6N134/L2   | CS600/L2                   |            |                     |            | MC600/L2                   |
| Defense Level                      |            | CD650/651/L2               | CH350/L2   | CSM169/L2           | CSM1600/L  |                            |
| Space Level                        | 6N134/L2S  | CS600/L2S<br>CD650/651/L2S | CH350/L2S  | CSM169/L2S          | CSM1600/L2 | MC600/L2S                  |
| Standard Gold Plate Finish         | Gold Plate | Gold Plate                 | Gold Plate | Gold Plate          | Gold Plate | Gold Plate                 |
| Solder Dipped                      | Option 20  | Option 20                  | Option 20  |                     |            |                            |
| Butt Cut/Gold Plate                | Option 10  | Option 10                  | Option 10  |                     |            |                            |
| Gull Wing/Soldered                 | Option 30  | Option 30                  | Option 30  |                     |            |                            |
| Crew Cut/Gold Plate                | Option 60  | Option 60                  | Option 60  |                     |            |                            |

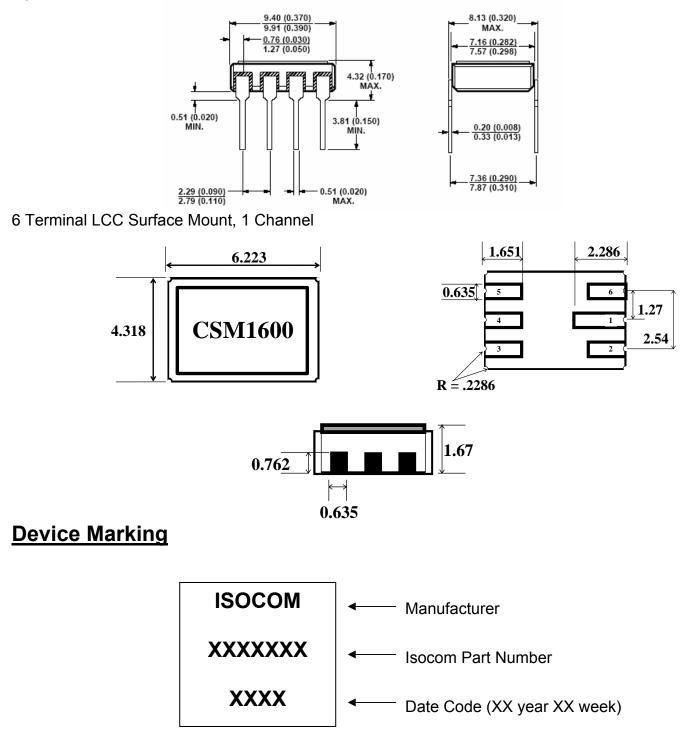

### **Functional Diagrams**


| CH350     | CS600     | CD650/651                 | 6N134                                                              | CSM169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSM1600   |
|-----------|-----------|---------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1         | 1 Channel | 2 Channel                 | 2 Channel                                                          | 4 Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Channel |
| Channel   |           |                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 5 4 3<br> |           | 8765<br><u>22</u><br>1234 | 16 15 14 13 12 11 10 9<br><u>Å</u><br><u>K1</u><br>1 2 3 4 5 6 7 8 | 16 15 14 13 12 11 10 9<br><u>* Â Â Â Â</u><br><u>* 8</u><br><u>* 8</u><br><del>* 8</del><br><del>* 100</del><br><del>* 1000000000000000000000000000000000000</del> |           |
| MC600     |           |                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 1         |           |                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Channel   |           |                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|           |           |                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |


For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

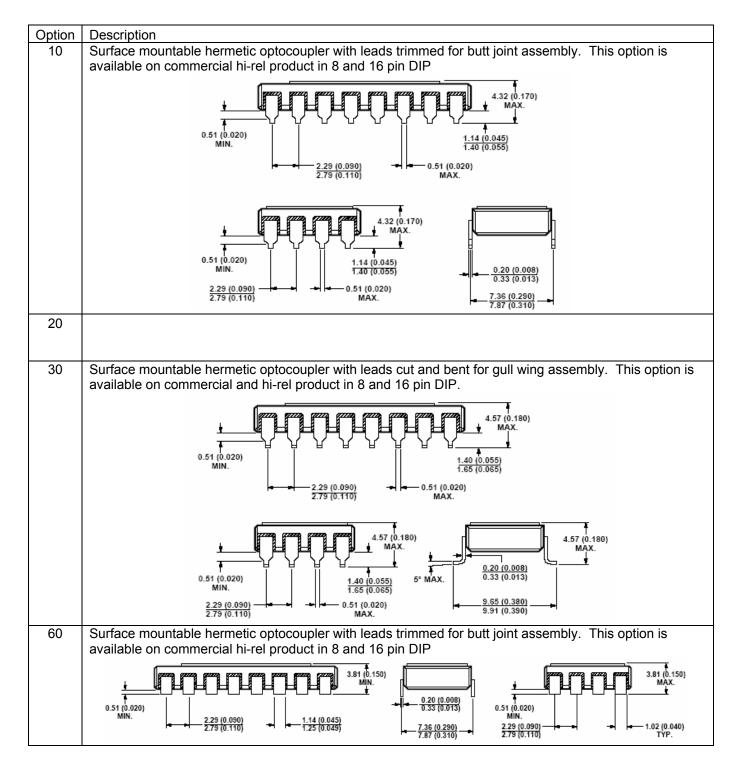
### **Outline Drawings**

16 pin DIP, 4 Channel









For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

8 pin DIP 1 and 2 Channel



For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

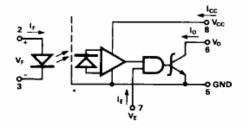
#### Hermetic Optocoupler Options



For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

## **Absolute Maximum Ratings**

| Storage Temperature        | -65°C to +150°C                                           |
|----------------------------|-----------------------------------------------------------|
| Operating Temperature      | -55°C to +125°C                                           |
| Lead Soldering Temperature | 260C for 10S, 1.6mm below seating plane where appropriate |


#### **Input Diode**

| Peak Forward Current    | 40mA | $I_F (\leq 1 \text{ mS duration})$ |
|-------------------------|------|------------------------------------|
| Average Forward Current | 20mA | l <sub>F</sub>                     |
| Reverse Voltage         | 5V   | V <sub>R</sub>                     |
| Power Dissipation       | 35mW |                                    |

#### **Output Detector**

| Supply Voltage              | 7V   | V <sub>CC</sub> (1minute maximum) |
|-----------------------------|------|-----------------------------------|
| Current                     | 25mA | l <sub>o</sub>                    |
| Collector Power Dissipation | 40mW |                                   |
| Voltage                     | 7V   | V <sub>o</sub> (See note 1)       |

### **Single Channel Schematic**



For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

# $\frac{\text{Electrical Characteristics}}{T_{A} = -55^{\circ}\text{C to } +125^{\circ}\text{C U.O.S.}}$

All typical values at  $V_{CC}$  = 5V,  $T_A$  = 25°C (each channel where appropriate).

| Parameter                                                             | Symbol           | Test Conditions                                                                                | Device         | Min | Туре | Max | Units |
|-----------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|
| High Level Output<br>Current<br>(See note 1)                          | I <sub>ОН</sub>  | $I_F = 250 \mu A,$<br>$V_O = V_{CC} = 5.5 V$                                                   |                | -   | 20   | 250 | μA    |
| Lower Level Output<br>Voltage<br>(See notes 1 & 9)                    | V <sub>OL</sub>  | $I_F$ = 10mA, $V_{CC}$ = 5.5V,<br>$I_{OL}$ (sinking) = 10mA                                    |                | -   | 0.4  | 0.6 | V     |
| <b>`</b>                                                              |                  | $I_F$ = 5mA, V <sub>CC</sub> = 5.5V,<br>$I_{OL}$ (sinking) = 13mA                              | CD650          |     |      |     |       |
| High Level Supply<br>Current                                          | I <sub>CCH</sub> | $V_{CC} = 5.5V, I_{F1} = I_{F2} = 0$                                                           |                | -   | 15   | 30  | mA    |
| Low Level Supply Current                                              | I <sub>CCL</sub> | $V_{CC} = 5.5V, I_{F1} = I_{F2} = 10mA$                                                        | Cs600          | -   | 15   | 19  | mA    |
|                                                                       |                  |                                                                                                | Cd650<br>Cd651 |     | 20   | 38  |       |
|                                                                       |                  | $V_{CC} = 5.5V, I_{F1} = I_{F2} = 13mA$                                                        | Ch350          |     |      | 36  |       |
|                                                                       |                  | $V_{CC} = 5.5V, I_{F1} = I_{F2} = 20mA$                                                        | 6N134          |     |      | 36  | 1     |
| Input-Output Insulation<br>Leakage Current<br>(See notes 2 & 10)      | I <sub>I-O</sub> | RH = 45%, T <sub>A</sub> = 25°C, t = 5S<br>V <sub>IO</sub> = 1500Vdc                           |                | -   | -    | 1.0 | μA    |
| Input Forward Voltage<br>(See note 1)                                 | V <sub>F</sub>   | I <sub>F</sub> = 10mA, T <sub>A</sub> = 25°C                                                   |                | -   | 1.5  | 1.9 | V     |
|                                                                       |                  | I <sub>F</sub> = 20mA                                                                          |                | -   | -    | 1.9 |       |
| Input Reverse Breakdown<br>Voltage<br>(See note 1)                    | B <sub>VR</sub>  | I <sub>R</sub> = 10μΑ, Τ <sub>Α</sub> = 25°C                                                   |                | 5   | -    | -   | V     |
| Propagation Delay Time<br>to<br>High Output Level<br>See notes 1 & 5) | t <sub>PLH</sub> | $R_L = 510\Omega$ , $I_F = 13mA$ ,<br>$T_A = 25°C$ , $C_L = 50pF$                              | 6N134          | -   | -    | 100 | nS    |
|                                                                       |                  | $R_L = 510\Omega$ , $I_F = 13mA$ ,<br>$T_A = 25^{\circ}C$ , $C_L = 15pF$                       | 6N134<br>CD651 | -   | 60   | 90  |       |
|                                                                       |                  |                                                                                                | CH350          |     |      | 200 |       |
|                                                                       |                  | R <sub>L</sub> = 350Ω, I <sub>F</sub> = 7.5mA,<br>T <sub>A</sub> = 25°C, C <sub>L</sub> = 15pF | Cs600          |     |      | 75  |       |
| Propagation Delay Time<br>to<br>Low Output Level<br>(See notes 1 & 6) | t <sub>PHL</sub> | $R_L = 510\Omega, I_F = 13mA,$<br>$T_A = 25^{\circ}C, C_L = 50pF$                              | 6N134          | -   | -    | 100 | nS    |
|                                                                       |                  | R <sub>L</sub> = 510Ω, I <sub>F</sub> = 13mA,<br>T <sub>A</sub> = 25°C, C <sub>L</sub> = 15pF  | 6N134<br>CD651 | -   | 55   | 90  |       |
|                                                                       |                  | $R_L = 510\Omega, I_F = 13mA,$<br>$T_A = 25^{\circ}C, C_L = 15pF$                              | CH350          |     |      | 200 | 1     |
|                                                                       |                  | $R_L = 350\Omega$ , $I_F = 7.5mA$ ,<br>$T_A = 25^{\circ}C$ , $C_L = 15pF$                      | CS600<br>CD650 |     |      | 100 | 1     |
| Current Transfer Ratio<br>(See note 1)                                | CTR              | $I_F = 10mA, V_O = 0.6V, V_{CC} = 5.5V$                                                        |                | 100 | -    | -   | %     |
|                                                                       |                  | $I_F = 5mA, V_O = 0.6V, V_{CC} = 5.5V$                                                         | CS600<br>CD650 | 100 | 300  |     |       |

For sales enquiries, or further information, please contact our sales office at:

Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

## **Typical Characteristics** $T_{A} = 25^{\circ}C$ . $V_{CC} = 5V$ each channel where appropriate

| Parameter                                                       | Symbol                                    | Test Conditions                                                                     | Note<br>s | Min | Туре             | Max | Units |
|-----------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-----------|-----|------------------|-----|-------|
| Input Diode Temperature<br>Coefficient                          | $\frac{\Delta_{\rm VF}}{\Delta_{\rm TA}}$ | I <sub>F</sub> = 20mA                                                               | 1         | -   | -1.9             | -   | mV/°C |
| Resistance                                                      | R <sub>I-0</sub>                          | V <sub>10</sub> = 500V                                                              | 3         | -   | 10 <sup>12</sup> | -   | Ω     |
| Capacitance                                                     | C <sub>I-O</sub>                          | f = 1MHz                                                                            | 3         | -   | 1.9              | -   | pF    |
| Input Capacitance                                               | C <sub>IN</sub>                           | f = 1MHz, V <sub>F</sub> = 0                                                        | 1         | -   | 60               | -   | pF    |
| Input-Input Leakage<br>Current                                  | I <sub>I-I</sub>                          | 45% Relative Humidity<br>$V_{II}$ = 500Vdc, t = 5S                                  | 4         | -   | 0.5              | -   | nA    |
| Resistance                                                      | R <sub>I-I</sub>                          | $V_{II} = 500 V dc$                                                                 | 4         | -   | 10 <sup>12</sup> | -   | Ω     |
| Capacitance                                                     | CI-I                                      | f = 1MHz                                                                            | 4         | -   | 0.6              | -   | pF    |
| Output Rise (10-90%)                                            | tr                                        | $R_L = 510\Omega, C_L = 15pF, I_F = 13mA$                                           | 1         | -   | 35               | -   | nS    |
| Output Fall Time (90-<br>10%)                                   | tf                                        | $R_L = 510\Omega, C_L = 15pF, I_F = 13mA$                                           | 1         | -   | 35               | -   | nS    |
| Common Mode Transient<br>Immunity at Logic High<br>Output Level | CM <sub>H</sub>                           | $V_{O}$ (min) = 2V, $V_{CM}$ = 10V (peak)<br>$R_{L}$ = 510 $\Omega$ , $I_{F}$ = 0mA | 1&7       | -   | 1000             | -   | V/µS  |
| Common Mode Transient<br>Immunity at Logic Low<br>Output Level  | CML                                       | $V_O(max) = 0.8V, V_{CM} = 10V (peak)$<br>$R_L = 510\Omega, I_F = 10mA$             | 1&8       | -   | -1000            | -   | V/µS  |

#### Notes: (Apply typically to 16 pin package)

1. Each channel, where appropriate.

2. Measured between pins 1 through 4 shorted together, and pins 9 through 16 shorted together.

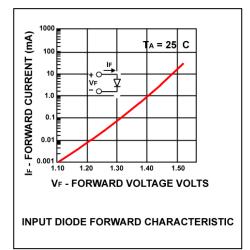
3. Measured between pins 1 and 2, or 5 and 6 shorted together, and pins 9 through 16 shorted together.

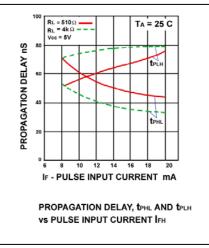
4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.

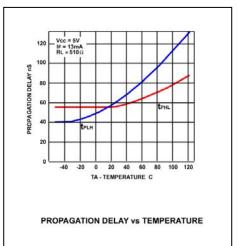
5. The t<sub>PLH</sub> propagation delay is measured from the 6.5mA point on the trailing edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.

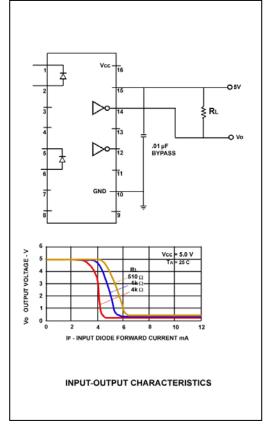
6. The t<sub>PHI</sub> propagation delay is measured from the 6.5mA point on the leading edge of the input pulse to the 1.5V point on the leading edge of the output pulse.

7.  $CM_{H}$  is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e.,  $V_{\odot} > 2.0V$ ).

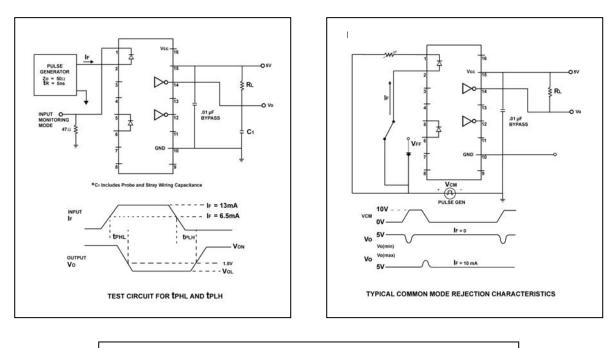

8. CM<sub>L</sub> is the maximum tolerable common mode transient to assure that the output will remain in the logic low state (i.e.,  $V_{\odot} < 2.0V$ ).

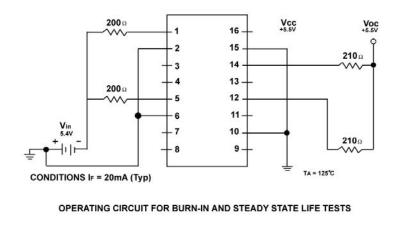

9. It is essential that a bypass capacitor (0.1 to 0.1µF, ceramic) be connected from pin 10 to pin 15. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20mm.


10. This is a momentary withstand test, not an operating condition.


For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

### **Electrical Characteristics**








For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055





For sales enquiries, or further information, please contact our sales office at: Isocom Ltd, Hutton Close, Crowther Industrial Estate, District 3, Washington, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055