ACS86MS # Radiation Hardened Quad 2-Input Exclusive OR Gate April 1995 #### **Features** - 1.25 Micron Radiation Hardened SOS CMOS - Total Dose 300K RAD (Si) - Single Event Upset (SEU) Immunity x 10⁻¹⁰ Errors/Bit-Day (Typ) - SEU LET Threshold >80 MEV-cm²/mg - Dose Rate Upset >10¹¹ RAD (Si)/s, 20ns Pulse - Latch-Up Free Under Any Conditions - Military Temperature Range: -55°C to +125°C - Significant Power Reduction Compared to ALSTTL Logic - DC Operating Voltage Range: 4.5V to 5.5V - Input Logic Levels - VIL = 30% of VCC Max - VIH = 70% of VCC Min - Input Current ≤1μA at VOL, VOH ## Description The Intersil ACS86MS is a radiation hardened quad 2-input exclusive OR gate. A high logic level on both inputs forces the output to a logic low state. The ACS86MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of the radiation hardened, high-speed, CMOS/SOS Logic Family. #### **Pinouts** 14 LEAD CERAMIC DUAL-IN-LINE MIL-STD-1835 DESIGNATOR, CDIP2-T14, LEAD FINISH C TOP VIEW 14 LEAD CERAMIC FLATPACK MIL-STD-1835 DESIGNATOR, CDFP3-F14, LEAD FINISH C TOP VIEW ## **Ordering Information** | PART NUMBER | PART NUMBER TEMPERATURE RANGE | | PACKAGE | |---------------|-------------------------------|-----------------------------|--------------------------| | ACS86DMSR | -55°C to +125°C | Intersil Class S Equivalent | 14 Lead SBDIP | | ACS86KMSR | -55°C to +125°C | Intersil Class S Equivalent | 14 Lead Ceramic Flatpack | | ACS86D/Sample | +25°C | Sample | 14 Lead SBDIP | | ACS86K/Sample | +25°C | Sample | 14 Lead Ceramic Flatpack | | ACS86HMSR | +25°C | Die | Die | ## Truth Table | INP | OUTPUT | | |-----|--------|----| | An | Bn | Yn | | L | L | L | | L | Н | Н | | Н | L | Н | | Н | Н | L | NOTE: L = Logic Level Low, H = Logic Level High ## **Functional Diagram** #### **Absolute Maximum Ratings Reliability Information** Supply Voltage -0.5V to +6.0V Thermal Impedance Input Voltage Range.....-0.5V to VCC +0.5V DIP..... 74°C/W 24°C/W 116°C/W DC Input Current, Any One Input±10mA Flatpack..... 30°C/W Maximum Package Power Dissipation at +125°C DC Drain Current, Any One Output.....±50mA Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (Soldering 10s).....+265°C Flatpack......0.4W Junction Temperature (TJ) +175°C Maximum Device Power Dissipation.....(TBD)W (All Voltages Referenced to VSS) CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ## **Operating Conditions** | Supply Voltage Range | Input High Voltage (VIH) VCC to 70% of VCC | |---|--| | Input Rise and Fall Time at 4.5V VCC (TR, TF)10ns/V Max | Input Low Voltage (VIL) | | Operating Temperature Range55°C to +125°C | | #### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTE 1) | GROUP
A SUB- | | LIM | ITS | | |-----------------------------------|--------|--|-----------------|----------------------|----------|------|-------| | PARAMETER | SYMBOL | CONDITIONS | GROUPS | TEMPERATURE | MIN | MAX | UNITS | | Supply Current | ICC | VCC = 5.5V,
VIN = VCC or GND | 1 | +25°C | - | 5 | μΑ | | | | VIIV = VGC OI GIVD | 2, 3 | +125°C, -55°C | - | 100 | μА | | Output Current
(Source) | IOH | VCC = 4.5V, VIH = 4.5V,
VOUT = VCC -0.4V, | 1 | +25°C | -12 | - | mA | | (Source) | | VIL = 0V, (Note 2) | 2, 3 | +125°C, -55°C | -8 | - | mA | | Output Current (Sink) | IOL | VCC = 4.5V, VIH = 4.5V,
VOUT = 0.4V, VIL = 0V, | 1 | +25°C | 12 | - | mA | | (Sirik) | | (Note 2) | 2, 3 | +125°C, -55°C | 8 | - | mA | | Output Voltage High | VOH | VCC = 5.5V, VIH = 3.85V,
VIL = 1.65V, IOH = -50μA | 1, 2, 3 | +25°C, +125°C, -55°C | VCC -0.1 | - | V | | | | VCC = 4.5V, VIH = 3.15V,
VIL = 1.35V, IOH = -50μA | 1, 2, 3 | +25°C, +125°C, -55°C | VCC -0.1 | - | V | | Output Voltage Low | VOL | VCC = 5.5V, VIH = 3.85V,
VIL = 1.65V, IOL = 50μA | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | | | VCC = 4.5V, VIH = 3.15V,
VIL = 1.35V, IOL = 50μA | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | Input Leakage IIN
Current | | VCC = 5.5V,
VIN = VCC or GND | 1 | +25°C | - | ±0.5 | μΑ | | | | VIIV - VOC OI GIVD | 2, 3 | +125°C, -55°C | - | ±1.0 | μΑ | | Noise Immunity
Functional Test | FN | VCC = 4.5V, VIH = 3.15V,
VIL = 1.35V, (Note 3) | 7, 8A, 8B | +25°C, +125°C, -55°C | - | - | V | ## NOTES: - 1. All voltages referenced to device GND. - 2. Force/measure functions may be interchanged. - 3. For functional tests, VO ≥4.0V is recognized as a logic "1", and VO ≤0.5V is recognized as a logic "0". #### TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | | GROUP | | LIMITS | | | |-----------------------------------|--------|-------------------------------------|------------------|---------------|--------|-----|-------| | PARAMETER | SYMBOL | (NOTES 1, 2)
CONDITIONS | A SUB-
GROUPS | TEMPERATURE | MIN | MAX | UNITS | | Propagation Delay Input to Output | TPHL | VCC = 4.5V, VIH = 4.5V,
VIL = 0V | 9 | +25°C | 2 | 12 | ns | | | TPLH | VCC = 4.5V, VIH = 4.5V,
VIL = 0V | 10, 11 | +125°C, -55°C | 2 | 13 | ns | #### NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns. #### **TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS** | | | | | | LIMITS | | | | |-------------------|--------|-------------------------|------|--------|--------|-----|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | NOTE | TEMP | MIN | TYP | MAX | UNITS | | Capacitance Power | CPD | VCC = 5.0V, VIH = 5.0V, | 1 | +25°C | - | TBD | - | pF | | Dissipation | | VIL = 0V, f = 1MHz | 1 | +125°C | ı | TBD | - | pF | | Input Capacitance | CIN | VCC = 5.0V, VIH = 5.0V, | 1 | +25°C | - | - | 10 | pF | | | | VIL = 0V, f = 1MHz | 1 | +125°C | - | - | 10 | pF | #### NOTE: 1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics. **TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS** | | | (NOTE 1) | | RAD
LIMITS | | | |-----------------------------------|--------------|--|-------------|---------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | TEMPERATURE | MIN | MAX | UNITS | | Supply Current | ICC | VCC = 5.5V, VIN = VCC or GND | +25°C | - | 100 | μΑ | | Output Current (Source) | IOH | VCC = VIH = 4.5V,
VOUT = VCC -0.4V, VIL = 0 | +25°C | -8.0 | _ | mA | | Output Current (Sink) | IOL | VCC = VIH = 4.5V,
VOUT = 0.4V, VIL = 0 | +25°C | 8.0 | - | mA | | Output Voltage High | VOH | VCC = 5.5V, VIH = 3.85V,
VIL = 1.65V, IOH = -50μA | +25°C | VCC -0.1 | - | V | | | | VCC = 4.5V, VIH = 3.15V,
VIL = 1.35V, IOH = -50μA | +25°C | VCC -0.1 | - | V | | Output Voltage Low | VOL | VCC = 5.5V, VIH = 3.85V,
VIL = 1.65V, IOL = 50μA | +25°C | - | 0.1 | V | | | | VCC = 4.5V, VIH = 3.15V,
VIL = 1.35V, IOL = 50μA | +25°C | - | 0.1 | V | | Input Leakage Current | IIN | VCC = 5.5V, VIN = VCC or GND | +25°C | - | ±1 | μΑ | | Noise Immunity Functional Test | FN | VCC = 4.5V, VIH = 3.15V,
VIL = 1.35V, (Note 2) | +25°C | - | - | V | | Propagation Delay Input to Output | TPHL
TPLH | VCC = 4.5V, VIH = 4.5V, VIL = 0V | +25°C | 2 | 13 | ns | ## NOTES: - 1. All voltages referenced to device GND. - 2. For functional tests, VO \geq 4.0V is recognized as a logic "1", and VO \leq 0.5V is recognized as a logic "0". ## TABLE 5. DELTA PARAMETERS (+25°C) | PARAMETER | SYMBOL | (NOTE 1)
DELTA LIMIT | UNITS | |----------------|---------|--------------------------------|-------| | Supply Current | ICC | ±1.0 | μΑ | | Output Current | IOL/IOH | ±15 | % | #### NOTE: 1. All delta calculations are referenced to 0 hour readings or pre-life readings. #### **TABLE 6. APPLICABLE SUBGROUPS** | CONFORMANCE GROUP | | METHOD | GROUP A SUBGROUPS | READ AND RECORD | |---------------------------|------------------------------|-------------|---------------------------------------|------------------------------| | Initial Test (Preburn-In) | | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test 1 (Postburn | -ln) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test 2 (Postburn | -In) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Interim Test 3 (Postburn | Interim Test 3 (Postburn-In) | | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Final Test | | 100%/5004 | 2, 3, 8A, 8B, 10, 11 | | | Group A (Note 1) | | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11 | | | Group B | Subgroup B-5 | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 | | | Subgroup B-6 | Sample/5005 | 1, 7, 9 | | | Group D | | Sample/5005 | 1, 7, 9 | | #### NOTE: 1. Alternate Group A testing may be exercised in accordance with MIL-STD-883, Method 5005. #### **TABLE 7. TOTAL DOSE IRRADIATION** | | | TE | ST | READ AND | RECORD | |--------------------|--------|---------|----------|----------|------------------| | CONFORMANCE GROUP | METHOD | PRE RAD | POST RAD | PRE RAD | POST RAD | | Group E Subgroup 2 | 5005 | 1, 7, 9 | Table 4 | 1, 9 | Table 4 (Note 1) | #### NOTE: 1. Except FN test which will be performed 100% Go/No-Go. ## TABLE 8. BURN-IN TEST CONNECTIONS (+125°C < TA < 139°C) | | | | | OSCILI | LATOR | | | | |---------------------------|---------------------------------|--------------------|------------------------------|------------------------------|-------|--|--|--| | OPEN | GROUND | 1/2 VCC = 3V ±0.5V | VCC = 6V ±0.5V | 50kHz | 25kHz | | | | | STATIC BURN-IN 1 (Note 1) | STATIC BURN-IN 1 (Note 1) | | | | | | | | | - | 1, 2, 4, 5, 7, 9, 10,
12, 13 | 3, 6, 8, 11 | 14 | - | - | | | | | STATIC BURN-IN 2 (Note 1) | | | | | | | | | | - | 7 | 3, 6, 8, 11 | 1, 2, 4, 5, 9,
10, 12, 13 | - | - | | | | | DYNAMIC BURN-IN (Note 1) | | | | | | | | | | - | 7 | 3, 6, 8, 11 | 14 | 1, 2, 4, 5, 9,
10, 12, 13 | - | | | | #### NOTE: 1. Each pin except VCC and GND will have a series resistor of $500\Omega \pm 5\%$. ## TABLE 9. IRRADIATION TEST CONNECTIONS (TA = $+25^{\circ}$ C, $\pm 5^{\circ}$ C) | FUNCTION | OPEN | GROUND | VCC ±0.5V | |------------------------------|-------------|--------|-------------------------------| | Irradiation Circuit (Note 1) | 3, 6, 8, 11 | 7 | 1, 2, 4, 5, 9, 10, 12, 13, 14 | #### NOTE: 1. Each pin except VCC and GND will have a series resistor of $47k\Omega \pm 5\%$. Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures. ## Intersil - Space Products MS Screening Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) Radiation Verification (Each Wafer) Method 1019. 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull Method 2023 100% Internal Visual Inspection Method 2010 100% Temperature Cycling Method 1010 Condition C $(-65^{\circ} \text{ to } +150^{\circ}\text{C})$ 100% Constant Acceleration 100% PIND Testing 100% External Visual Inspection 100% Serialization 100% Initial Electrical Test 100% Static Burn-In 1 Method 1015, 24 Hours at +125°C Min 100% Interim Electrical Test 1 (Note 1) 100% Static Burn-In 2 Method 1015, 24 Hours at +125°C Min 100% Interim Electrical Test 2 (Note 1) 100% Dynamic Burn-In Method 1015, 240 Hours at +125°C or 180 Hours at +135°C 100% Interim Electrical Test 3 (Note 1) 100% Final Electrical Test 100% Fine and Gross Seal Method 1014 100% Radiographics Method 2012 (2 Views) 100% External Visual Method 2009 Group A (All Tests) Method 5005 (Class S) Group B (Optional) Method 5005 (Class S) (Note 2) Group D (Optional) Method 5005 (Class S) (Note 2) CSI and/or GSI (Optional) (Note 2) Data Package Generation (Note 3) #### NOTES: 1. Failures from interim electrical tests 1 and 2 are combined for determining PDA (PDA = 5% for subgroups 1, 7, 9 and delta failures combined, PDA = 3% for subgroup 7 failures). Interim electrical tests 3 PDA (PDA = 5% for subgroups 1, 7, 9 and delta failures combined, PDA = 3% for subgroup 7 failures). 2. These steps are optional, and should be listed on the purchase order if required. 3. Data Package Contents: Cover Sheet (P.O. Number, Customer Number, Lot Date Code, Intersil Number, Lot Number, Quantity). Certificate of Conformance (as found on shipper). Lot Serial Number Sheet (Good Unit(s) Serial Number and Lot Number). Variables Data (All Read, Record, and delta operations). Group A Attributes Data Summary. Wafer Lot Acceptance Report (Method 5007) to include reproductions of SEM photos. NOTE: SEM photos to include percent of step coverage. X-Ray Report and Film, including penetrometer measurements. GAMMA Radiation Report with initial shipment of devices from the same wafer lot; containing a Cover Page, Disposition, RAD Dose, Lot Number, Test Package, Spec Number(s), Test Equipment, etc. Irradiation Read and Record data will be on file at Intersil. # Propagation Delay Timing Diagram and Load Circuit #### **AC VOLTAGE LEVELS** | PARAMETER | ACS | UNITS | |-----------|------|-------| | VCC | 4.50 | V | | VIH | 4.50 | V | | VS | 2.25 | V | | VIL | 0 | V | | GND | 0 | V | ## ACS86MS ## Die Characteristics #### **DIE DIMENSIONS:** 88 mils x 88 mils 2.24mm x 2.24mm #### **METALLIZATION:** Type: AlSiCu Metal 1 Thickness: 6.75kÅ (Min), 8.25kÅ (Max) Metal 2 Thickness: 9kÅ (Min), 11kÅ (Max) ## **GLASSIVATION:** Type: SiO₂ Thickness: 8kÅ ±1kÅ #### **DIE ATTACH:** Material: Silver Glass or JM7000 Polymer after 7/1/95 #### **WORST CASE CURRENT DENSITY:** $< 2.0 \times 10^5 \text{ A/cm}^2$ #### **BOND PAD SIZE:** > 4.3 mils x 4.3 mils $> 110\mu m$ x $110\mu m$ ## Metallization Mask Layout All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com