

Internal Power Dissipation
Operating Junction Temperature
Range (Note 2)

LM2524D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM3524D	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	150°
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 4 sec.)	
M, N Pkg.	$260^{\circ} \mathrm{C}$

Electrical Characteristics

(Note 1)

Symbol	Parameter	Conditions	LM2524D			LM3524D			Units
			Typ	Tested Limit (Note 3)	Design Limit (Note 4	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	
REFERENCE SECTION									
$\mathrm{V}_{\text {REF }}$	Output Voltage		5	4.85	4.80	5	4.75		$\mathrm{V}_{\text {Min }}$
				5.15	5.20		5.25		$\mathrm{V}_{\text {Max }}$
$\mathrm{V}_{\text {RLine }}$	Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ to 40 V	10	15	30	10	25	50	$m \mathrm{~V}_{\text {Max }}$
$\mathrm{V}_{\text {RLoad }}$	Load Regulation	$\mathrm{L}_{\mathrm{L}}=0 \mathrm{~mA}$ to 20 mA	10	15	25	10	25	50	$\mathrm{mV}_{\text {Max }}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{REF}}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	66			66			dB
Ios	Short Circuit Current	$\mathrm{V}_{\text {REF }}=0$	50	$\begin{array}{r} 25 \\ 180 \\ \hline \end{array}$		50	$\begin{aligned} & 25 \\ & 200 \end{aligned}$		$\begin{aligned} & \text { mA Min } \\ & \text { mA Max } \end{aligned}$
N_{O}	Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	40		100	40		100	$\mu \mathrm{V}_{\text {rms }}$ Max
	Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	20			20			$\mathrm{mV} / \mathrm{kHr}$
OSCILLATOR SECTION									
fosc	Max. Freq.	$\mathrm{R}_{\mathrm{T}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}$ (Note 7)	550		500	350			$\mathrm{kHz}_{\text {Min }}$
fosc	Initial Accuracy	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$ (Note 7)	20	$\begin{aligned} & 17.5 \\ & 22.5 \end{aligned}$		20	$\begin{array}{r} 17.5 \\ 22.5 \\ \hline \end{array}$		$\mathrm{kHz}_{\text {Min }}$ $\mathrm{kHz}_{\text {Max }}$
		$\mathrm{R}_{\mathrm{T}}=2.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$ (Note 7)	38	34 42		38	30 46		$\begin{gathered} \mathrm{kHz}_{\text {Min }} \\ \mathrm{kHz}_{\text {Max }} \\ \hline \end{gathered}$
$\Delta \mathrm{fosc}$	Freq. Change with V_{IN}	$\mathrm{V}_{\mathrm{IN}}=8$ to 40 V	0.5	1		0.5	1.0		\% Max
$\Delta \mathrm{fosc}$	Freq. Change with Temp.	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { at } 20 \mathrm{kHz} \mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \end{aligned}$	5			5			\%
Vosc	Output Amplitude (Pin 3) (Note 8)	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$	3	2.4		3	2.4		$\mathrm{V}_{\text {Min }}$
tpw	Output Pulse Width (Pin 3)	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$	0.5	1.5		0.5	1.5		${ }^{\prime 2} \mathrm{~S}_{\text {Max }}$
	Sawtooth Peak Voltage	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$	3.4	3.6	3.8		3.8		$\mathrm{V}_{\text {Max }}$
	Sawtooth Valley Voltage	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$	1.1	0.8	0.6		0.6		$\mathrm{V}_{\text {Min }}$
ERROR-AMP SECTION									
V_{10}	Input Offset Voltage	$\mathrm{V}_{\text {CM }}=2.5 \mathrm{~V}$	2	8	10	2	10		$\mathrm{mV}_{\text {Max }}$
I_{B}	Input Bias	$\mathrm{V}_{\text {CM }}=2.5 \mathrm{~V}$	1	8	10	1	10		$\mu \mathrm{A}_{\text {Max }}$

Electrical Characteristics (Continued)

(Note 1)

Symbol	Parameter	Conditions	LM2524D			LM3524D			Units
			Typ			Typ	Tested Limit (Note 3)	Design Limit (Note 4)	
ERROR-AMP SECTION									
	Current								
I_{10}	Input Offset Current	$\mathrm{V}_{\text {CM }}=2.5 \mathrm{~V}$	0.5	1.0	1	0.5	1		$\mu A_{\text {max }}$
$I_{\text {cosi }}$	Compensation Current (Sink)	$\mathrm{V}_{\mathrm{IN}(\mathrm{l})}-\mathrm{V}_{\mathrm{IN}(\mathrm{N} \mid)}=150 \mathrm{mV}$	95	$\begin{gathered} 65 \\ 125 \end{gathered}$		95	$\begin{gathered} 65 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A}_{\text {Min }} \\ & \mu \mathrm{A}_{\text {Max }} \end{aligned}$
$I_{\text {coso }}$	Compensation Current (Source)	$\mathrm{V}_{\mathrm{IN}(\mathrm{NI})}-\mathrm{V}_{\mathrm{IN}(1)}=150 \mathrm{mV}$	-95	$\begin{gathered} -125 \\ -65 \end{gathered}$		-95	$\begin{gathered} \hline-125 \\ -65 \end{gathered}$		$\mu \mathrm{A}_{\text {Min }}$ $\mu A_{\text {Max }}$
Avol	Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	80	74	60	80	70	60	$\mathrm{dB}_{\text {Min }}$
VCMR	Common Mode Input Voltage Range			$\begin{aligned} & 1.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 5.4 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\text {Min }} \\ & \mathrm{V}_{\text {Max }} \end{aligned}$
CMRR	Common Mode Rejection Ratio		90	80		90	80		$\mathrm{dB}_{\text {Min }}$
G_{BW}	Unity Gain Bandwidth	$\mathrm{A}_{\mathrm{VOL}}=0 \mathrm{~dB}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	3			2			MHz
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\infty$		$\begin{aligned} & \hline 0.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & \hline 0.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\text {Min }} \\ & \mathrm{V}_{\text {Max }} \\ & \hline \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=8$ to 40 V	80		70	80	65		$\mathrm{db}_{\text {Min }}$
COMPARATOR SECTION									
$\frac{t_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OSC}}}$	Minimum Duty Cycle	$\begin{aligned} & \operatorname{Pin} 9=0.8 \mathrm{~V}, \\ & {\left[\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}\right]} \end{aligned}$	0	0		0	0		\% ${ }_{\text {max }}$
$\frac{t_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OSC}}}$	Maximum Duty Cycle	$\begin{aligned} & \text { Pin } 9=3.9 \mathrm{~V}, \\ & {\left[R_{T}=5.6 \mathrm{k}, \mathrm{C}_{T}=0.01 \mu \mathrm{~F}\right]} \end{aligned}$	49	45		49	45		\%Min
$\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OSC}}}$	Maximum Duty Cycle	$\begin{aligned} & \text { Pin } 9=3.9 \mathrm{~V}, \\ & {\left[R_{T}=1 \mathrm{k}, C_{T}=0.001 \mu \mathrm{~F}\right]} \end{aligned}$	44	35		44	35		$\%_{\text {Min }}$
$\mathrm{V}_{\text {COMPZ }}$	Input Threshold (Pin 9)	Zero Duty Cycle	1			1			V
$\mathrm{V}_{\text {COMPM }}$	Input Threshold (Pin 9)	Maximum Duty Cycle	3.5			3.5			V
$I_{1 B}$	Input Bias Current		-1			-1			$\mu \mathrm{A}$
CURRENT LIMIT SECTION									
$\mathrm{V}_{\text {SEN }}$	Sense Voltage	$\begin{aligned} & V_{(\text {Pin } 2)}-V_{(\text {Pin } 1)} \geq \\ & 150 \mathrm{mV} \end{aligned}$	200	$\begin{aligned} & 180 \\ & 220 \end{aligned}$		200	$\begin{aligned} & 180 \\ & 220 \end{aligned}$		$\begin{aligned} & \mathrm{mV}_{\text {Min }} \\ & \mathrm{mV}_{\text {Max }} \end{aligned}$
TC- $\mathrm{V}_{\text {sense }}$	Sense Voltage T.C.		0.2			0.2			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	Common Mode Voltage Range	$\mathrm{V}_{5}-\mathrm{V}_{4}=300 \mathrm{mV}$	$\begin{gathered} \hline-0.7 \\ 1 \\ \hline \end{gathered}$			$\begin{gathered} \hline-0.7 \\ 1 \end{gathered}$			$\begin{aligned} & \hline \mathrm{V}_{\text {Min }} \\ & \mathrm{V}_{\text {Max }} \end{aligned}$
SHUT DOWN SECTION									
$\mathrm{V}_{\text {SD }}$	High Input Voltage	$\begin{aligned} & V_{(\text {Pin } 2)}-V_{(\text {Pin } 1)} \geq \\ & 150 \mathrm{mV} \end{aligned}$	1	$\begin{aligned} & \hline 0.5 \\ & 1.5 \end{aligned}$		1	$\begin{aligned} & \hline 0.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\text {Min }} \\ & \mathrm{V}_{\text {Max }} \end{aligned}$
$\mathrm{I}_{\text {SD }}$	High Input Current	$\mathrm{I}_{\text {(pin 10) }}$	1			1			mA
OUTPUT SECTION (EACH OUTPUT)									
$\mathrm{V}_{\text {CES }}$	Collector Emitter Voltage Breakdown	$\mathrm{I}_{\mathrm{C}} \leq 100 \mu \mathrm{~A}$		55			40		$\mathrm{V}_{\text {Min }}$

Electrical Characteristics (Continued)

(Note 1)

Symbol	Parameter	Conditions	LM2524D			LM3524D			Units
			Typ	Tested Limit (Note 3)	Design Limit (Note 4)	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	
OUTPUT SECTION (EACH OUTPUT)									
$\mathrm{I}_{\text {CES }}$	Collector Leakage Current	$\mathrm{V}_{\text {CE }}=60 \mathrm{~V}$							
		$\mathrm{V}_{\text {CE }}=55 \mathrm{~V}$	0.1	50					$\mu \mathrm{A}_{\text {Max }}$
		$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}$				0.1	50		
$\mathrm{V}_{\text {CESAT }}$	Saturation Voltage	$\mathrm{I}_{\mathrm{E}}=20 \mathrm{~mA}$	0.2	0.5		0.2	0.7		$\mathrm{V}_{\text {Max }}$
		$\mathrm{I}_{\mathrm{E}}=200 \mathrm{~mA}$	1.5	2.2		1.5	2.5		
V_{EO}	Emitter Output Voltage	$\mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$	18	17		18	17		$\mathrm{V}_{\text {Min }}$
t_{R}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{E}}=-250 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \end{aligned}$	200			200			ns
t_{F}	Fall Time	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{k}$	100			100			ns
SUPPLY CHARACTERISTICS SECTION									
V_{IN}	Input Voltage Range	After Turn-on		$\begin{gathered} 8 \\ 40 \end{gathered}$			$\begin{gathered} 8 \\ 40 \end{gathered}$		$\begin{aligned} & V_{\operatorname{Min}} \\ & V_{\operatorname{Max}} \end{aligned}$
T	Thermal Shutdown Temp.	(Note 2)	160			160			${ }^{\circ} \mathrm{C}$
I_{N}	Stand By Current	$\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (Note 6)	5	10		5	10		mA

Note 1: Unless otherwise stated, these specifications apply for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface numbers apply over the rated temperature range: LM 2524 D is -40° to $85^{\circ} \mathrm{C}$ and LM 3524 D is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$ and f Osc $=20 \mathrm{kHz}$.
Note 2: For operation at elevated temperatures, devices in the N package must be derated based on a thermal resistance of $86^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. Devices in the M package must be derated at $125^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: Tested limits are guaranteed and 100% tested in production.
Note 4: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage range. These limits are not used to calculate outgoing quality level.
Note 5: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 6: Pins 1, 4, 7, 8, 11, and 14 are grounded; Pin $2=2$ V. All other inputs and outputs open.
Note 7: The value of a C_{t} capacitor can vary with frequency. Careful selection of this capacitor must be made for high frequency operation. Polystyrene was used in this test. NPO ceramic or polypropylene can also be used.
Note 8: OSC amplitude is measured open circuit. Available current is limited to 1 mA so care must be exercised to limit capacitive loading of fast pulses.

Typical Performance Characteristics

Maximum Average Power
Dissipation (N, M Packages)

Maximum \& Minimum Duty Cycle Threshold Voltage

Typical Performance Characteristics (Continued)

Standby Current
vs Voltage

Output Transistor Emitter Voltage

Standby Current
vs Temperature

Reference Transistor Peak Output Current

Current Limit Sense Voltage

Test Circuit

Functional Description

INTERNAL VOLTAGE REGULATOR

The LM3524D has an on-chip 5V, 50 mA , short circuit protected voltage regulator. This voltage regulator provides a supply for all internal circuitry of the device and can be used as an external reference.
For input voltages of less than 8 V the 5 V output should be shorted to pin $15, \mathrm{~V}_{\mathrm{IN}}$, which disables the 5 V regulator. With these pins shorted the input voltage must be limited to a maximum of 6 V . If input voltages of $6 \mathrm{~V}-8 \mathrm{~V}$ are to be used, a pre-regulator, as shown in Figure 1, must be added.

*Minimum C_{O} of $10 \mu \mathrm{~F}$ required for stability.
FIGURE 1.

OSCILLATOR

The LM3524D provides a stable on-board oscillator. Its frequency is set by an external resistor, R_{T} and capacitor, C_{T}. A graph of R_{T}, C_{T} vs oscillator frequency is shown is Figure 2. The oscillator's output provides the signals for triggering an internal flip-flop, which directs the PWM information to the outputs, and a blanking pulse to turn off both outputs during transitions to ensure that cross conduction does not occur. The width of the blanking pulse, or dead time, is controlled by the value of C_{T}, as shown in Figure 3. The recommended values of R_{T} are $1.8 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, and for $\mathrm{C}_{\mathrm{T}}, 0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.
If two or more LM3524D's must be synchronized together, the easiest method is to interconnect all pin 3 terminals, tie all pin 7's (together) to a single C_{T}, and leave all pin 6's open except one which is connected to a single R_{T}. This method works well unless the LM3524D's are more than 6" apart.
A second synchronization method is appropriate for any circuit layout. One LM3524D, designated as master, must have its $R_{T} C_{T}$ set for the correct period. The other slave LM3524D(s) should each have an $\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}$ set for a 10% longer period. All pin 3's must then be interconnected to allow the master to properly reset the slave units.
The oscillator may be synchronized to an external clock source by setting the internal free-running oscillator frequency 10% slower than the external clock and driving pin 3 with a pulse train (approx. 3V) from the clock. Pulse width should be greater than 50 ns to insure full synchronization.

FIGURE 2.

FIGURE 3.

ERROR AMPLIFIER

The error amplifier is a differential input, transconductance amplifier. Its gain, nominally 86 dB , is set by either feedback or output loading. This output loading can be done with either purely resistive or a combination of resistive and reactive components. A graph of the amplifier's gain vs output load resistance is shown in Figure 4.

FIGURE 4.
The output of the amplifier, or input to the pulse width modulator, can be overridden easily as its output impedance is very high ($Z_{O} \cong 5 \mathrm{M} \Omega$). For this reason a DC voltage can be

Functional Description
 (Continued)

applied to pin 9 which will override the error amplifier and force a particular duty cycle to the outputs. An example of this could be a non-regulating motor speed control where a variable voltage was applied to pin 9 to control motor speed. A graph of the output duty cycle vs the voltage on pin 9 is shown in Figure 5.
The duty cycle is calculated as the percentage ratio of each output's ON-time to the oscillator period. Paralleling the outputs doubles the observed duty cycle.

FIGURE 5.
The amplifier's inputs have a common-mode input range of $1.5 \mathrm{~V}-5.5 \mathrm{~V}$. The on board regulator is useful for biasing the inputs to within this range.

CURRENT LIMITING

The function of the current limit amplifier is to override the error amplifier's output and take control of the pulse width. The output duty cycle drops to about 25% when a current limit sense voltage of 200 mV is applied between the $+C_{L}$ and $-\mathrm{C}_{\mathrm{L}}$ sense terminals. Increasing the sense voltage approximately 5% results in a 0% output duty cycle. Care should be taken to ensure the -0.7 V to +1.0 V input common-mode range is not exceeded.
In most applications, the current limit sense voltage is produced by a current through a sense resistor. The accuracy of this measurement is limited by the accuracy of the sense resistor, and by a small offset current, typically $100 \mu \mathrm{~A}$, flowing from +CL to -CL.

OUTPUT STAGES

The outputs of the LM3524D are NPN transistors, capable of a maximum current of 200 mA . These transistors are driven 180° out of phase and have non-committed open collectors and emitters as shown in Figure 6.

FIGURE 6.

Typical Applications

Design Equations
$R_{F}=5 k\left(\frac{V_{0}}{2.5}-1\right)$
$\mathrm{f}_{\mathrm{OSC}} \cong \frac{1}{R_{T} C_{T}}$
$L 1=\frac{2.5 \mathrm{~V}_{\mathrm{IN}}{ }^{2}\left(\mathrm{~V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}\right)}{\mathrm{f}_{\mathrm{OSC}} \mathrm{l}_{\mathrm{O}} \mathrm{V}_{0}{ }^{2}}$
$C_{0}=\frac{I_{0}\left(V_{0}-V_{I N}\right)}{f_{\mathrm{OSc}} \Delta V_{0} V_{0}}$
$I_{O(M A X)}=I_{I N} \frac{V_{I N}}{V_{0}}$
FIGURE 7. Positive Regulator, Step-Up Basic Configuration (lin(MAx) $=80 \mathrm{~mA})$

FIGURE 8. Positive Regulator, Step-Up Boosted Current Configuration

Typical Applications (Continued)

> Design Equations
> $\mathrm{R}_{\mathrm{F}}=5 \mathrm{k} \Omega\left(\frac{\mathrm{V}_{\mathrm{o}}}{2.5}-1\right)$
> $R_{C L}=\frac{\begin{array}{c}\text { Current Limit } \\ \text { Sense Volt }\end{array}}{I_{\mathrm{O}(\mathrm{MAX})}}$
> $f_{O S C} \cong \frac{1}{R_{T} C_{T}}$
> $\mathrm{~L} 1=\frac{2.5 \mathrm{~V}_{0}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{0}\right)}{\mathrm{I}_{\mathrm{O}} \mathrm{V}_{\mathrm{IN}} \mathrm{f}_{\mathrm{OSC}}}$
> $C_{0}=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 \Delta V_{0} V_{I N} L 1}$
> $I_{o(M A X)}=I_{I N} \frac{V_{I N}}{V_{0}}$

FIGURE 9. Positive Regulator, Step-Down Basic Configuration (I) $\left.\boldsymbol{I}_{\operatorname{IN(MAX)}}=80 \mathrm{~mA}\right)$

FIGURE 10. Positive Regulator, Step-Down Boosted Current Configuration

Typical Applications (Continued)

$$
\begin{aligned}
& \text { Design Equations } \\
& R_{F}=5 k\left(1-\frac{V_{0}}{2.5}\right) \\
& f_{O S C} \cong \frac{1}{R_{T} C_{T}} \\
& L 1=\frac{2.5 V_{I N} V_{0}}{f_{O S C}\left(V_{O}+V_{I N}\right) I_{0}} \\
& C_{0}=\frac{I_{0} V_{0}}{\Delta V_{O} f_{O S C}\left(V_{O}+V_{I N}\right)}
\end{aligned}
$$

FIGURE 11. Boosted Current Polarity Inverter

BASIC SWITCHING REGULATOR THEORY AND APPLICATIONS

The basic circuit of a step-down switching regulator circuit is shown in Figure 12, along with a practical circuit design using the LM3524D in Figure 15.

FIGURE 12. Basic Step-Down Switching Regulator

The circuit works as follows: Q1 is used as a switch, which has ON and OFF times controlled by the pulse width modulator. When Q1 is ON, power is drawn from $\mathrm{V}_{\text {IN }}$ and supplied to the load through L1; V_{A} is at approximately V_{IN}, D 1 is reverse biased, and C_{0} is charging. When Q1 turns OFF the inductor L1 will force V_{A} negative to keep the current flowing in it, D1 will start conducting and the load current will flow through D 1 and L 1 . The voltage at V_{A} is smoothed by the L1, C_{o} filter giving a clean DC output. The current flowing through L 1 is equal to the nominal DC load current plus some $\Delta \mathrm{I}_{\mathrm{L}}$ which is due to the changing voltage across it. A good rule of thumb is to set $\Delta I_{L P-P} \cong 40 \% \times I_{o}$.

Typical Applications (Continued)

FIGURE 13. Relation of Switch Timing to Inductor Current in Step-Down Regulator

From the relation $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{t}}}, \Delta \mathrm{I}_{\mathrm{L}} \cong \frac{\mathrm{V}_{\mathrm{L}} \mathrm{T}}{\mathrm{L} 1}$

$$
\Delta \mathrm{L}_{\mathrm{L}}+=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{0}\right) \mathrm{t}_{\mathrm{ON}}}{\mathrm{~L} 1} ; \Delta \mathrm{L}_{\mathrm{L}}^{-}=\frac{\mathrm{V}_{\mathrm{O}} \mathrm{t}_{\mathrm{OFF}}}{\mathrm{~L} 1}
$$

Neglecting $\mathrm{V}_{\mathrm{SAT}}, \mathrm{V}_{\mathrm{D}}$, and settling $\Delta \mathrm{I}_{\mathrm{L}}^{+}=\Delta \mathrm{I}_{\mathrm{L}}{ }^{-}$;

$$
\mathrm{v}_{\mathrm{O}} \cong \mathrm{~V}_{\mathrm{IN}}\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OFF}}+\mathrm{t}_{\mathrm{ON}}}\right)=\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{~T}}\right) ;
$$

where T = Total Period
The above shows the relation between $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{o}}$ and duty cycle.

$$
\mathrm{I}_{\mathrm{IN}(\mathrm{DC})}=\mathrm{I}_{\mathrm{OUT}(\mathrm{DC})}\left(\frac{t_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}\right)
$$

as Q1 only conducts during t_{ON}.

$$
\begin{gathered}
P_{I N}=I_{I N(D C)} V_{I N}=\left(I_{O(D C)}\right)\left(\frac{t_{O N}}{t_{O N}+t_{O F F}}\right) V_{I N} \\
P_{O}=I_{O} V_{O}
\end{gathered}
$$

The efficiency, η, of the circuit is:

$$
\begin{aligned}
\eta \text { MAX } & =\frac{P_{0}}{P_{I N}}=\frac{I_{0} V_{0}}{I_{0} \frac{\left(t_{O N}\right)}{T} V_{I N}+\frac{\left(V_{S A T} t_{O N}+V_{D 1} t_{O F F}\right)}{T} I_{O}} \\
& =\frac{V_{0}}{V_{0}+1} \text { for } V_{S A T}=V_{D 1}=1 V .
\end{aligned}
$$

η MAX will be further decreased due to switching losses in Q1. For this reason Q1 should be selected to have the maximum possible f_{T}, which implies very fast rise and fall times.

CALCULATING INDUCTOR L1

$$
\begin{aligned}
t_{O N} \cong & \frac{\left(\Delta I_{\mathrm{L}}+\right) \times \mathrm{L} 1}{\left(\mathrm{~V}_{I N}-\mathrm{V}_{0}\right)}, \mathrm{t}_{\mathrm{OFF}}=\frac{\left(\Delta \mathrm{I}_{\mathrm{L}}^{-}\right) \times \mathrm{L} 1}{\mathrm{~V}_{\mathrm{O}}} \\
\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}=\mathrm{T} & =\frac{\left(\Delta \mathrm{I}_{\mathrm{L}}+\right) \times \mathrm{L} 1}{\left(\mathrm{~V}_{I N}-\mathrm{V}_{\mathrm{Q}}\right)}+\frac{\left(\Delta \mathrm{I}_{\mathrm{L}}^{-}\right) \times \mathrm{L} 1}{\mathrm{~V}_{\mathrm{O}}} \\
& =\frac{0.4 \mathrm{I}_{\mathrm{L} 1}}{\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{O}}\right)}+\frac{0.41_{\mathrm{O}} \mathrm{~L} 1}{\mathrm{~V}_{\mathrm{O}}}
\end{aligned}
$$

$$
\mathrm{L} 1=\frac{2.5 \mathrm{~V}_{0}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{0}\right)}{\mathrm{I}_{\mathrm{O}} \mathrm{~V}_{\mathrm{IN}} \mathrm{f}}
$$

where: L1 is in Henrys
f is switching frequency in Hz
Also, see LM1578 data sheet for graphical methods of inductor selection.

CALCULATING OUTPUT FILTER CAPACITOR C_{o} :

Figure 13 shows L1's current with respect to Q1's $t_{O N}$ and $t_{\text {OFF }}$ times (V_{A} is at the collector of Q1). This curent must flow to the load and C_{o}. C_{o} 's current will then be the difference between I_{L}, and I_{o}.

$$
I_{o}=I_{L}-I_{o}
$$

From Figure 13 it can be seen that current will be flowing into C_{o} for the second half of $\mathrm{t}_{\text {ON }}$ through the first half of $\mathrm{t}_{\text {OFF }}$, or a time, $\mathrm{t}_{\mathrm{ON}} / 2+\mathrm{t}_{\mathrm{OFF}} / 2$. The current flowing for this time is $\Delta \mathrm{I}_{\llcorner } / 4$. The resulting $\Delta \mathrm{V}_{\mathrm{c}}$ or $\Delta \mathrm{V}_{\mathrm{o}}$ is described by:

$$
\text { where: } C \text { is in farads, } T \text { is } \frac{1}{\text { switching frequency }}
$$

$$
\Delta V_{0} \text { is p-p output ripple }
$$

For best regulation, the inductor's current cannot be allowed to fall to zero. Some minimum load current I_{o}, and thus inductor current, is required as shown below:

$$
\mathrm{I}_{\mathrm{O}(\mathrm{MIN})}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{0}\right) \mathrm{t}_{\mathrm{ON}}}{2 \mathrm{~L} 1}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{0}\right) \mathrm{V}_{\mathrm{O}}}{2 \mathrm{fV}_{\mathrm{IN}} \mathrm{~L} 1}
$$

$$
\begin{aligned}
& \Delta \mathrm{V}_{\text {op-p }}=\frac{1}{\mathrm{C}} \times \frac{\Delta \mathrm{I}_{\mathrm{L}}}{4} \times\left(\frac{\mathrm{t}_{\mathrm{ON}}}{2}+\frac{\mathrm{t}_{\mathrm{OFF}}}{2}\right) \\
& =\frac{\Delta I_{\mathrm{L}}}{4 \mathrm{C}}\left(\frac{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}{2}\right) \\
& \text { Since } \Delta L_{L}=\frac{V_{0}\left(T-t_{O N}\right)}{L 1} \text { and } t_{O N}=\frac{V_{0} T}{V_{I N}} \\
& \Delta V_{\text {op-p }}=\frac{V_{0}\left(T-\frac{V_{0} T}{V_{I N}}\right)}{4 C L 1}\left(\frac{T}{2}\right)=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 V_{I N} C_{0} L 1} \text { or } \\
& C_{o}=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 \Delta V_{0} V_{I N} L 1}
\end{aligned}
$$

Since $\Delta \mathrm{I}_{\mathrm{L}}{ }^{+}=\Delta \mathrm{I}_{\mathrm{L}}{ }^{-}=0.4 \mathrm{I}_{\mathrm{o}}$
Solving the above for L1

Typical Applications (Continued)

FIGURE 14. Inductor Current Slope in Step-Down Regulator

A complete step-down switching regulator schematic, using the LM3524D, is illustrated in Figure 15. Transistors Q1 and Q2 have been added to boost the output to 1A. The 5V regulator of the LM3524D has been divided in half to bias the error amplifier's non-inverting input to within its common-mode
range. Since each output transistor is on for half the period, actually 45%, they have been paralleled to allow longer possible duty cycle, up to 90%. This makes a lower possible input voltage. The output voltage is set by:

$$
\mathrm{v}_{\mathrm{O}}=\mathrm{V}_{\mathrm{NI}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

where V_{NI} is the voltage at the error amplifier's non-inverting input.
Resistor R3 sets the current limit to:

$$
\frac{200 \mathrm{mV}}{\mathrm{R} 3}=\frac{200 \mathrm{mV}}{0.15}=1.3 \mathrm{~A} .
$$

Figures 16, 17 and show a PC board layout and stuffing diagram for the 5V, 1A regulator of Figure 15. The regulator's performance is listed in Table 1.

*Mounted to Staver Heatsink No. V5-1
Q1 = BD344
Q2 $=2 \mathrm{~N} 5023$
L1 $=>40$ turns No. 22 wire on Ferroxcube No. K300502 Torroid core.
FIGURE 15. 5V, 1 Amp Step-Down Switching Regulator

Typical Applications (Continued)

THE STEP-UP SWITCHING REGULATOR

Figure 18 shows the basic circuit for a step-up switching regulator. In this circuit Q1 is used as a switch to alternately apply $\mathrm{V}_{\mathrm{IN}_{N}}$ across inductor L1. During the time, $\mathrm{t}_{\mathrm{ON}}, \mathrm{Q} 1$ is ON and energy is drawn from V_{IN} and stored in L1; D1 is reverse biased and I_{o} is supplied from the charge stored in C_{o}. When Q1 opens, $t_{\text {OFF }}$, voltage V1 will rise positively to the point where D1 turns ON. The output current is now supplied through L1, D1 to the load and any charge lost from C_{0} during t_{ON} is replenished. Here also, as in the step-down regulator, the current through L1 has a DC component plus some $\Delta I_{L} \cdot \Delta I_{L}$ is again selected to be approximately 40% of I_{L}. Figure 19 shows the inductor's current in relation to Q1's ON and OFF times

FIGURE 18. Basic Step-Up Switching Regulator

FIGURE 19. Relation of Switch Timing to Inductor Current in Step-Up Regulator

$$
\begin{aligned}
& \text { From } \Delta I_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{L}} \mathrm{~T}}{\mathrm{~L}}, \Delta \mathrm{I}_{\mathrm{L}}+\cong \frac{\mathrm{V}_{\mathrm{IN}} \mathrm{t}_{\mathrm{ON}}}{\mathrm{L1}} \\
& \text { and } \Delta \mathrm{I}_{\mathrm{L}}^{-} \cong \frac{\left(\mathrm{V}_{0}-\mathrm{V}_{\mathrm{IN}}\right) \mathrm{t}_{\mathrm{OFF}}}{\mathrm{~L} 1}
\end{aligned}
$$

Since $\Delta \mathrm{I}_{\mathrm{L}}+=\Delta \mathrm{I}_{\mathrm{L}}, \mathrm{V}_{\text {IN }} \mathrm{t}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{O}} \mathrm{t}_{\text {OFF }}-\mathrm{V}_{\text {IN }} \mathrm{t}_{\mathrm{OFF}}$, and neglecting $V_{\text {SAT }}$ and $V_{D 1}$

$$
v_{0} \cong v_{I N}\left(1+\frac{t_{\mathrm{ON}}}{t_{\mathrm{OFF}}}\right)
$$

The above equation shows the relationship between $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{o}}$ and duty cycle.
In calculating input current $\mathrm{I}_{\left.\mathrm{IN}_{\mathrm{NCO}}\right)}$, which equals the inductor's DC current, assume first 100\% efficiency:

$$
\begin{gathered}
P_{\text {IN }}=I_{I N(D C)} V_{I N} \\
P_{\text {OUT }}=I_{\mathrm{O}} V_{\mathrm{O}}=I_{\mathrm{O}} V_{\mathrm{IN}}\left(1+\frac{t_{\mathrm{ON}}}{t_{\mathrm{OFF}}}\right)
\end{gathered}
$$

for $\eta=100 \%, P_{\text {OUT }}=P_{\text {IN }}$

$$
\begin{gathered}
\mathrm{I}_{0} \mathrm{~V}_{\mathrm{IN}}\left(1+\frac{t_{\mathrm{ON}}}{t_{\mathrm{OFF}}}\right)=\mathrm{I}_{\mathrm{IN}(\mathrm{DC})} \mathrm{V}_{\mathrm{IN}} \\
\mathrm{I}_{\mathrm{IN}(\mathrm{DC})}=\mathrm{I}_{\mathrm{O}}\left(1+\frac{t_{\mathrm{ON}}}{t_{\mathrm{OFF}}}\right)
\end{gathered}
$$

This equation shows that the input, or inductor, current is larger than the output current by the factor $\left(1+t_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}\right)$. Since this factor is the same as the relation between V_{o} and $\mathrm{V}_{\mathrm{IN}}, \mathrm{I}_{\mathrm{IN}(\mathrm{DC})}$ can also be expressed as:

$$
I_{\mathrm{IN}(\mathrm{DC})}=\mathrm{I}_{0}\left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

So far it is assumed $\eta=100 \%$, where the actual efficiency or $\eta_{\text {MAX }}$ will be somewhat less due to the saturation voltage of Q1 and forward on voltage of D1. The internal power loss due to these voltages is the average I_{L} current flowing, or $\mathrm{I}_{\mathbb{N}}$, through either $\mathrm{V}_{\mathrm{SAT}}$ or $\mathrm{V}_{\mathrm{D} 1}$. For $\mathrm{V}_{\mathrm{SAT}}=\mathrm{V}_{\mathrm{D} 1}=1 \mathrm{~V}$ this power loss becomes $\mathrm{I}_{\mathrm{IN}(\mathrm{DC})}(1 \mathrm{~V}) . \eta_{\text {MAX }}$ is then:

$$
\eta_{M A X}=\frac{P_{0}}{P_{I N}}=\frac{v_{0} I_{0}}{V_{0} I_{0}+I_{I N}(1 V)}=\frac{v_{0} I_{0}}{v_{0} I_{0}+I_{0}\left(1+\frac{t_{0 N}}{t_{0 F F}}\right)}
$$

$$
\text { From } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{IN}}\left(1+\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OFF}}}\right)
$$

$$
\eta_{\max }=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{IN}}+1}
$$

This equation assumes only DC losses, however $\eta_{\text {MAX }}$ is further decreased because of the switching time of Q1 and D1.

Typical Applications (Continued)

In calculating the output capacitor C_{0} it can be seen that C_{o} supplies I_{0} during $t_{O N}$. The voltage change on C_{0} during this time will be some $\Delta \mathrm{V}_{\mathrm{c}}=\Delta \mathrm{V}_{\text {}}$ or the output ripple of the regulator. Calculation of C_{o} is:

$$
\begin{aligned}
& \Delta V_{0}=\frac{I_{0} t_{O N}}{C_{0}} \text { or } C_{0}=\frac{I_{0} t_{O N}}{\Delta V_{0}} \\
& \text { From } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{~T}}{\mathrm{t}_{\mathrm{OFF}}}\right) ; \text { toFF }=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{O}}} \mathrm{~T} \\
& \text { where } T=t_{\text {ON }}+t_{\text {OFF }}=\frac{1}{f} \\
& \mathrm{t}_{\mathrm{ON}}=\mathrm{T}-\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{O}}} \mathrm{~T}=\mathrm{T}\left(\frac{\mathrm{~V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{O}}}\right) \text { therefore: } \\
& C_{0}=\frac{I_{0} T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right)}{\Delta V_{0}}=\frac{I_{0}\left(V_{0}-V_{I N}\right)}{f \Delta V_{0} V_{0}}
\end{aligned}
$$

where: C_{o} is in farads, f is the switching frequency,
$\Delta \mathrm{V}_{\mathrm{o}}$ is the p-p output ripple
Calculation of inductor L1 is as follows:

$$
\mathrm{L} 1=\frac{\mathrm{V}_{\mathrm{IN}^{t} \mathrm{ON}}}{\Delta \mathrm{I}_{\mathrm{L}}{ }^{+}} \text {, since during } \mathrm{t}_{\mathrm{ON}} \text {, }
$$

V_{IN} is applied across L1

$$
\begin{gathered}
\Delta \mathrm{I}_{\mathrm{Lp}-\mathrm{p}}=0.4 \mathrm{I}_{\mathrm{L}}=0.41 \mathrm{I}_{\mathrm{IN}}=0.4 \mathrm{I}_{\mathrm{O}}\left(\frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \text {, therefore: } \\
\mathrm{L} 1=\frac{\mathrm{V}_{\mathrm{IN}^{\prime} \mathrm{ON}}}{0.4 \mathrm{I}_{\mathrm{O}}\left(\frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}}}\right)} \text { and since } \mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{T}\left(\mathrm{~V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}\right)}{\mathrm{V}_{\mathrm{O}}} \\
\mathrm{~L} 1=\frac{2.5 \mathrm{~V}_{\mathrm{IN}}{ }^{2}\left(\mathrm{~V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}\right)}{\mathrm{fl}_{\mathrm{O}} \mathrm{~V}_{\mathrm{O}}^{2}}
\end{gathered}
$$

where: L 1 is in henrys, f is the switching frequency in Hz To apply the above theory, a complete step-up switching regulator is shown in Figure 20. Since $\mathrm{V}_{\text {IN }}$ is 5 V , $\mathrm{V}_{\text {REF }}$ is tied to $\mathrm{V}_{\mathbb{I N}}$. The input voltage is divided by 2 to bias the error amplifier's inverting input. The output voltage is:

$$
\mathrm{V}_{\mathrm{OUT}}=\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) \times \mathrm{V}_{\mathrm{INV}}=2.5 \times\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

The network D1, C1 forms a slow start circuit.
This holds the output of the error amplifier initially low thus reducing the duty-cycle to a minimum. Without the slow start circuit the inductor may saturate at turn-on because it has to supply high peak currents to charge the output capacitor from 0 V . It should also be noted that this circuit has no supply rejection. By adding a reference voltage at the non-inverting input to the error amplifier, see Figure 21, the input voltage variations are rejected.
The LM3524D can also be used in inductorless switching regulators. Figure 22 shows a polarity inverter which if connected to Figure 20 provides a -15 V unregulated output.

Typical Applications (Continued)

L1 $=>25$ turns No. 24 wire on Ferroxcube No. K300502 Toroid core
FIGURE 20. 15V, 0.5A Step-Up Switching Regulator

FIGURE 22. Polarity Inverter Provides Auxiliary -15V Unregulated Output from Circuit of Figure 20

FIGURE 21. Replacing R3/R4 Divider in Figure 20 with
Reference Circuit Improves Line Regulation

Connection Diagram

Order Number LM2524DN or LM3524DN
See NS Package Number N16E
Order Number LM3524DM
See NS Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: $+49(0) 180-5327832$	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

