MSK
 M.S.KENNEDY CORP.
 600V/200A
 THREE PHASE BRIDGE PEM WITH BRAKE

 4853

 4853}

4707 Dey Road Liverpool, N.Y. 13088

FEATURES:

- Replaces MSK 4850
- Full Three Phase Bridge Configuration with SCR/IGBT Brake
- 600V Rated Voltage
- 200A Continuous Output Current
- Internal Zener Clamps on Gates
- Proprietary Encapsulation Provides Near Hermetic Performance
- MIL-PRF-38534 Screening Available (Modified)
- Light Weight Domed ALSIC Baseplate
- Robust Mechanical Design for Hi-Rel Applications
- Ultra-Low Inductance Internal Layout
- Withstands 96 Hours HAST and Thermal Cycling ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
- Contact MSK for MIL-PRF-38534 (Modified) Qualification Status

DESCRIPTION:

The MSK 4853 is one of a family of plastic encapsulated modules (PEM) developed specifically for use in military, aerospace and other severe environment applications. The Three Phase Bridge configuration along with the SCR/IGBT brake circuit and 600 volt/200 amp rating make it ideal for use in high current motor drive and inverter applications. The Aluminum Silicon Carbide (AISiC) baseplate offers superior flatness and light weight; far better than the copper or copper alloys found in most high power plastic modules. The high thermal conductivity materials used to construct the MSK 4853 allow high power outputs at elevated baseplate temperatures. Our proprietary coating, SEES ${ }^{\text {m }}$ - Severe Environment Encapsulation System - protects the internal circuitry of MSK PEM's from moisture and contamination, allowing them to pass the rugged environmental screening requirements of military and aerospace applications. MSK PEM's are also available with industry standard silicone gel coatings for a lower cost option.

EOUIVALENT SCHEMATIC

TYPICAL APPLICATIONS

- Motor Drives
- Inverters

VCE	Collector to Emitter Voltage 600V
VgE	Gate to Emitter Voltage $\pm 20 \mathrm{~V}$
Iout Current (Continuous) 200 A	
IOUTP Current Pulsed (1mS) 400 A	
VCASE Case Isolation Voltage 2500 V	

ELECTRICAL SPECIFICATIONS

Parameter (6)	Test Conditions	Group A	MSK 4853 H			MSK 4853			Units
		Subgroup	Min.	Typ.	Max.	Min.	Typ.	Max.	
Collector-Emitter Saturation Voltage	$\mathrm{IC}=200 \mathrm{~A}, \mathrm{VGE}=15 \mathrm{~V}$	1	-	2.55	2.9	-	2.55	3.0	V
		2	-	2.90	3.2	-	-	-	V
		3	-	3.60	4.0	-	-	-	V
Collector-Emitter Leakage Current	$\mathrm{VCE}=600 \mathrm{~V}, \mathrm{VGE}=0 \mathrm{~V}$	1	-	0.5	350	-	0.5	400	uA
		2	-	170	1700	-	-	-	uA
Gate Threshold Voltage	$\mathrm{IC}=60 \mathrm{~mA}, \mathrm{VCE}=\mathrm{VGE}$	1	3.5	4.1	7.5	3.3	4.1	7.8	V
		2	3.0	3.5	7.5	-	-	-	V
		3	4.0	4.5	8.5	-	-	-	V
Gate Leakage Current	$V C E=O V, V G E= \pm 15 \mathrm{~V}$	1	-	0.1	10	-	0.1	10	uA
		2	-	0.6	10	-	-	-	uA
		3	-	0.1	10	-	-	-	uA
Diode Forward Voltage	$I C=200 A$	1	-	1.8	2.5	-	1.8	2.6	V
		2	-	1.8	2.5	-	-	-	V
		3	-	2.0	2.8	-	-	-	V
SCR Reverse Leakage	$V R R M=600 \mathrm{~V}$	1	-	0.01	15	-	0.01	18	mA
		2	-	0.01	15	-	-	-	mA
		3	-	0.01	15	-	-	-	mA
SCR On Voltage	$I F=100 A$	1	-	1.0	1.35	-	1.0	1.4	V
		2	-	1.0	1.35	-	-	-	V
		3	-	1.0	1.35	-	-	-	V
SCR Holding Current		1	-	100	300	-	100	325	mA
		2	-	90	300	-	-	-	mA
		3	-	110	300	-	-	-	mA
Regen Diode Forward Voltage	$\mathrm{IF}=50 \mathrm{~A}$	1	-	1.3	2.4	-	1.3	2.5	V
Total Gate Charge (1)	$\mathrm{V}=300 \mathrm{~V}, \mathrm{IC}=200 \mathrm{~A}$	4	-	1.0	1.5	-	1.0	1.6	uC
E(on) (1) $\quad$$\mathrm{V}=300 \mathrm{~V}, \mathrm{IC}=20$ $\mathrm{~V}=300 \mathrm{~V}, \mathrm{IC}=1$ $\mathrm{~V}=300 \mathrm{~V}, \mathrm{IC}=20$ $\mathrm{~V}=300 \mathrm{~V}, \mathrm{IC}=10$	A, RG $=5 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	4	-	6	-	-	6	-	mJ
	A, RG $=5 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	4	-	3	6	-	3	7	mJ
	A, RG $=5 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	5	-	7	-	-	-	-	mJ
	A, RG $=5 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	5	-	4	-	-	-	-	mJ
E(off) (1) $\quad$$\mathrm{V}=300 \mathrm{~V}, \mathrm{IC}=20$ $\mathrm{~V}=300 \mathrm{~V}, \mathrm{IC}=10$ $\mathrm{~V}=300 \mathrm{~V}, \mathrm{IC}=20$ $\mathrm{~V}=300 \mathrm{~V}, \mathrm{IC}=10$, RG $=10 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	4	-	20	-	-	20	-	mJ
	, RG $=10 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	4	-	9	12	-	9	13	mJ
	, RG $=10 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	5	-	22	-	-	-	-	mJ
	, RG $=10 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	5	-	10	-	-	-	-	mJ
Diode Reverse Recovery Time (1)	$\mathrm{IE}=200, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	4	-	190	-	-	190	-	nS
	$\mathrm{IE}=100, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	4	-	185	-	-	185	-	nS
	$\mathrm{IE}=200, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	5	-	270	-	-	-	-	nS
	$\mathrm{IE}=100, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	5	-	250	-	-	-	-	nS
Diode Reverse Energery (1)	$\mathrm{IE}=200, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	4	-	2.5	-	-	2.5	-	mJ
	$\mathrm{IE}=100, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	4	-	2	4	-	2	-	mJ
	$\mathrm{IE}=200, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	5	-	5	-	-	-	-	mJ
	$\mathrm{IE}=100, \mathrm{di} / \mathrm{dt}=3500 \mathrm{~A} / \mathrm{uS}$	5	-	8	-	-	-	-	mJ
Thermal Resistance (1)	IGBT @ TJ=125 ${ }^{\circ} \mathrm{C}$	-	-	0.16	0.19	-	0.16	0.19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	DIODE @ TJ=125 ${ }^{\circ} \mathrm{C}$	-	-	0.35	0.41	-	0.35	0.41	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(1) Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
(2) Industrial grade devices shall be tested to subgroup 1 unless otherwise specified.
(3) Military grade devices (" H " suffix) shall be 100% tested to subgroups 1,2 and sample tested to subgroup 3 .
(4) Subgroups 4 testing available upon request.
(5) Subgroup 1, $4 \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 2,5 \mathrm{TA}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\
& 3 \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
$$

(6) All specifications apply to both the upper and lower sections of the half bridge.
(7) VGE $=15 \mathrm{~V}$ unless otherwise specified.
(8) Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle

THERMAL CALCULATIONS

Power dissipation and maximum allowable temperature rise involve many variables working together. Collector current, PWM duty cycle and switching frequency all factor into power dissipation. DC losses or "ON-TIME" losses are simply VCE(SAT) x Collector Current x PWM duty cycle. For the MSK 4853, Vce(SAT) = TBD max., and at 200 amps and a PWM duty cycle of 30%, DC losses equal TBD watts. Switching losses, in milli-joules, vary proportionally with switching frequency. The MSK 4853 typical switching losses at VCE $=300 \mathrm{~V}$ and ICE $=200 \mathrm{~A}$ are about TBDmJ, which is simply the sum of the turn-on switching loss and the turn-off switching loss. Multiplying the switching frequency times the switching losses will result in a power dissipation number for switching. The MSK 4853 , at 15 KHz , will exhibit switching power dissipation of TBD watts. The total losses are the sum of DC losses plus switching losses, or in this case, TBD watts total. TBD watts $\times 0.19^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance equals TBD degrees of temperature rise between the case and the junction. Subtracting $\mathrm{TBD}^{\circ} \mathrm{C}$ from the maximum junction temperature of $150^{\circ} \mathrm{C}$ equals $\mathrm{TBD}^{\circ} \mathrm{C}$ maximum case temperature for this example.

VCE(SAT) \times IC \times PWM duty cycle $=$ TBDV $\times 200 \mathrm{amps} \times 30 \%=$ TBD watts DC losses
Turn-on switching loss + Turn-off switching loss $=$ Total switching losses $=$ TBD + TBD $=$ TBDmJ
Total switching loss \times PWM frequency $=$ Total switching power dissipation $=$ TBDmJ $\times 15 \mathrm{KHz}=$ TBD watts
Total power dissipation $=$ DC losses + switching losses $=$ TBD + TBD $=$ TBD watts
Junction temperature rise above case $=$ Total power dissipation x thermal resistance
TBD watts $\times \mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}=\mathrm{TBD}^{\circ} \mathrm{C}$ temperature rise above case
Maximum junction temperature - junction temperature rise = maximum baseplate temperature
$150^{\circ} \mathrm{C}-\mathrm{TBD}^{\circ} \mathrm{C}=\mathrm{TBD}^{\circ} \mathrm{C}$

FREE-WHEEL DIUDE FGRWARD CHARACTERISTICS

<S1

SWITCHING CHARACTERISTICS

CGLLECTIR CURRENT, IC, 〈AMPERES〉

OPERATION IN ACCORDANCE WITH MIL-PRF-38534	INDUSTRIAL	CLASS H
QUALIFICATION (MODIFIED)	NO	YES
ELEMENT EVALUATION	NO	YES
CLEAN ROOM PROCESSING	YES	YES
NON DESTRUCT BOND PULL SAMPLE	YES	YES
CERTIFIED OPERATORS	NO	YES
MIL LINE PROCESSING	YES	YES
MAX REWORK SPECIFIED	NO	YES
ENCAPSULANT	GEL COAT	SEES ${ }^{\text {TM }}$
PRE-CAP VISUAL	YES - INDUSTRIAL	YES - CLASS H
TEMP CYCLE (-55 ${ }^{\circ} \mathrm{C}$ TO $\left.+125^{\circ} \mathrm{C}\right)$	NO	YES
BURN-IN	NO	YES - 160 HOURS
ELECTRICAL TESTING	YES - $25^{\circ} \mathrm{C}$	YES - FULL TEMP
EXTERNAL VISUAL	YES - SAMPLE	YES
XRAY	NO	NO
PIN FINISH	NI	NI

NOTE: ADDITIONAL SCREENING IS AVAILABLE SUCH AS XRAY, CSAM, MECHANICAL SHOCK, ETC. CONTACT FACTORY FOR QUAL STATUS.

ORDERING INFORMATION

MSK4853 H SCREENING

BLANK = INDUSTRIAL
H = MIL-PRF-38534 CLASS H (MODIFIED)
GENERAL PART NUMBER
THE ABOVE EXAMPLE IS A MILITARY SCREENED MODULE.

M.S. Kennedy Corp.

4707 Dey Road Liverpool, New York 13088
Phone (315) 701-6751
FAX (315) 701-6752
www.mskennedy.com
The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this datasheet.
Contact MSK for MIL-PRF-38534 (modified) qualification status.

