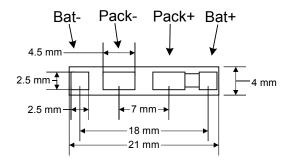
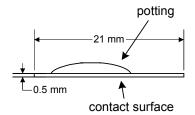
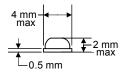


# **EM MICROELECTRONIC-MARIN SA**




# **Panther Lithium Battery Protection Module**


The Panther module is a Lithium battery protection circuit, which is designed to enhance the operating life of a one-cell rechargeable battery pack. Cell protection features include internally trimmed charge and discharge voltage limits as well as charge and discharge current limit detection. The voltage and current ratings are designed for the use in battery packs for portable phones, paging systems, music players and other portable equipment such as "Bluetooth" applications.


## **Features**

- Continuous battery voltage and current monitoring
- Trimmed charge and discharge voltage limits
- · Temperature dependant charge and discharge current limit detection
- Short circuit protected
- · No external elements needed
- Low resistance power MOS switches
- Small PCB footprint
- · Very small module height due to COB and SMD assembly

# **Structure and Dimensions**







Pad material: flash gold PCB material: FR4



# **EM MICROELECTRONIC-MARIN SA**



# **Electrical Characteristics**

# **Absolute Maximum Ratings**

| PARAMETER             | Symbol             | MIN  | TYP | MAX | UNITS |
|-----------------------|--------------------|------|-----|-----|-------|
| Supply voltage        | V <sub>PACK+</sub> | -1.3 |     | 9.0 | V     |
| Storage Temperature   | T <sub>store</sub> | -65  |     | 150 | °C    |
| Operating temperature | T <sub>A</sub>     | -20  |     | 80  | °C    |

# **Operating Conditions**

Supply voltage and current consumption

| PARAMETER                  | Symbol            | CONDITIONS       | MIN | TYP | MAX | UNITS     |
|----------------------------|-------------------|------------------|-----|-----|-----|-----------|
| Supply voltage             | $V_{PACK+}$       |                  | 1.3 | 3.6 | 8.5 | V         |
| Current consumption        | I <sub>dd</sub>   | @ 4.0V, FET ON   |     | 10  | 12  | μΑ        |
| Sleep mode                 | I <sub>dd</sub>   | @ 2.2V, FET OFF  |     | 3.7 | 5   | μΑ        |
| Continuous current         | I <sub>cont</sub> | @ 20°C, -25mA/°C | 2.0 |     |     | Α         |
| Current limit              | I <sub>max</sub>  | @ 20°C, -25mA/°C | 2.5 | 3.0 | 4.0 | Α         |
| Power switch on-resistance | Ri                | @ I = 2A         |     | 50  | 65  | $m\Omega$ |

#### State transitions levels

| PARAMETER               | Symbol    | CONDITIONS        | MIN  | TYP  | MAX  | UNITS |
|-------------------------|-----------|-------------------|------|------|------|-------|
| Panther -4.25           |           |                   |      |      |      |       |
| Overvoltage high limit  | $V_{ovh}$ | @ 20°C, +0.9mV/°C | 4.20 | 4.25 | 4.30 | V     |
| Overvoltage low level   | $V_{ovl}$ |                   | 3.80 | 3.90 | 4.00 | V     |
| Undervoltage high level | $V_{uvh}$ |                   | 3.40 | 3.50 | 3.60 | V     |
| Undervoltage low limit  | $V_{uvl}$ |                   | 2.30 | 2.37 | 2.45 | V     |
| Panther -4.35           |           |                   |      |      |      |       |
| Overvoltage high limit  | $V_{ovh}$ | @ 20°C, +0.9mV/°C | 4.30 | 4.35 | 4.40 | V     |
| Overvoltage low level   | $V_{ovl}$ |                   | 3.85 | 4.00 | 4.10 | V     |
| Undervoltage high level | $V_{uvh}$ |                   | 3.45 | 3.60 | 3.70 | V     |
| Undervoltage low limit  | $V_{uvl}$ |                   | 2.35 | 2.45 | 2.55 | V     |

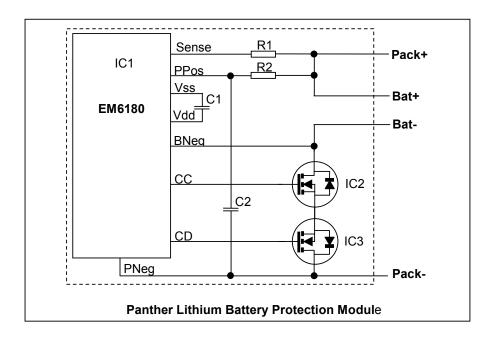
Vdd backup duration

| PARAMETER                  | Symbol            | CONDITIONS                 | MIN | TYP | MAX | UNITS |
|----------------------------|-------------------|----------------------------|-----|-----|-----|-------|
| Backup time of chip supply | T <sub>back</sub> | C <sub>Backup</sub> = 1 μF | 100 | 200 |     | ms    |

# Reaction times

| PARAMETER               | Symbol          | CONDITIONS | MIN | TYP | MAX | UNITS |
|-------------------------|-----------------|------------|-----|-----|-----|-------|
| Overvoltage dead time   | t <sub>oh</sub> |            | 26  | 32  | 38  | ms    |
| Undervoltage dead time  | t <sub>uv</sub> |            | 26  | 32  | 38  | ms    |
| Overcurrent dead time   | toc             |            | 6   | 12  | 14  | ms    |
| Short-circuit dead time | t <sub>sh</sub> | I > 20A    |     | 1.5 | 2   | ms    |

Overcurrent protection test period


| PARAMETER                  | Symbol             | CONDITIONS  | MIN | TYP       | MAX | UNITS |
|----------------------------|--------------------|-------------|-----|-----------|-----|-------|
| Testperiod                 | T <sub>iover</sub> | Charge mode |     | 4         |     | S     |
|                            |                    | User mode   |     | 2         |     |       |
| Number of tests to recover | N <sub>tests</sub> | Charge mode |     | unlimited |     |       |
| normal function            |                    | User mode   |     | 64        |     |       |



# **EM MICROELECTRONIC-MARIN SA**



# **Electrical Schematic**



# **Functional Description**

### Overcharge

If the battery voltage rises over the overvoltage high limit, charging is stopped by opening the power switch. The switch is closed again when:

- The battery voltage falls below overvoltage low level (self discharge of the battery).
- A discharge current is detected.

## Overdischarge

If the battery voltage falls under the undervoltage low limit, discharging is stopped by opening the power switch. The switch is closed again when:

- The battery voltage rises over undervoltage high level.
- A charge current is detected.



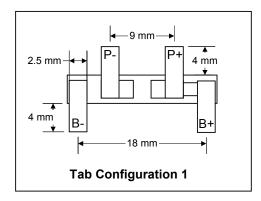
# **EM MICROELECTRONIC-MARIN SA**

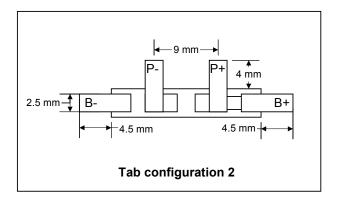


### **Charge Overcurrent**

If an overcurrent is detected, charging is interrupted by opening the power switch. After 4 seconds, the switch is closed again. If an overcurrent is detected again, the power switch reopens. This process is repeated every 4 seconds until:

- The overcurrent is removed.
- · The battery voltage rises over the overcharge voltage limit.


#### Discharge Overcurrent or short circuit


If an overcurrent is detected, discharging is interrupted by opening the power switch. The overcurrent counter is incremented. After 2 seconds the switch is closed again. If an overcurrent is detected again, the power switch reopens. This process is repeated every 2 seconds until:

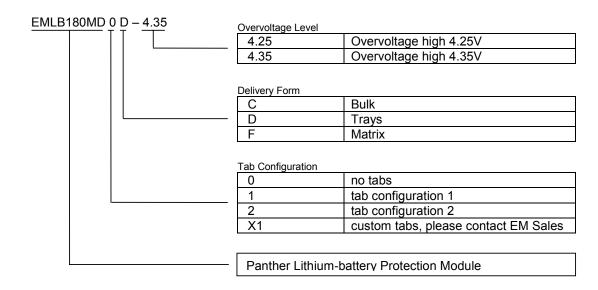
- The overcurrent is removed.
- The battery voltage falls under the discharge voltage limit.
- The overcurrent still exists after 64 attempts (which corresponds to a short circuit of 2 minutes). In this case
  the power switch will be shut down permanently in order to interrupt the short circuit. The switch will be
  closed again if a charge current is detected.

# **Tabs**

Nickel connection tabs are available to customer requirements. The following standard tab configurations exist:






The tab material is 99% Ni, 0.1mm thick.



# **EM MICROELECTRONIC-MARIN SA**



# **Ordering Information**



### **Updates**

| Date, Name | Chapter   | Old Version (Text, Figure, etc.) | New Version (Text, Figure, etc.) |
|------------|-----------|----------------------------------|----------------------------------|
| Version    | concerned |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |
|            |           |                                  |                                  |

EM Microelectronic-Marin SA cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the circuitry and specifications without notice at any time. You are strongly urged to ensure that the information given has not been superseded by a more up-to-date version.