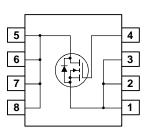
# SI9426DY

SEMICONDUCTOR IM

# Single N-Channel, 2.5V Specified MOSFET

#### **General Description**


This N-Channel 2.5V specified MOSFET is produced using Fairchild Semiconductor's high cell density DMOS technology process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint package.

## Applications

- DC/DC converter
- Load switch





# Absolute Maximum Ratings T<sub>A=25°C</sub> unless otherwise noted

| Symbol                                                   | Parameter                                                                                                  |                          | Ratings     | Units        |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|-------------|--------------|--|
| V <sub>DSS</sub>                                         | Drain-Source Voltage                                                                                       | rce Voltage              |             | V            |  |
| V <sub>GSS</sub>                                         | Gate-Source Voltage                                                                                        | urce Voltage             |             | V            |  |
| I <sub>D</sub>                                           | Drain Current – Continuous (Note 1a)                                                                       |                          | 10.5        | А            |  |
|                                                          | – Pulsed                                                                                                   |                          | 30          |              |  |
| P <sub>D</sub>                                           | Power Dissipation for Single Operation                                                                     | (Note 1a)                | 2.5         | W            |  |
|                                                          |                                                                                                            | (Note 1b)                | 1.2         |              |  |
|                                                          |                                                                                                            | (Note 1c)                | 1           |              |  |
| T <sub>J</sub> , T <sub>STG</sub>                        | Operating and Storage Junction Tempe                                                                       | rature Range             | -55 to +150 | °C           |  |
|                                                          |                                                                                                            | 5                        |             | _            |  |
|                                                          | I Characteristics                                                                                          | nt (Note 1a)             | 50          | °C/W         |  |
| <b>Therma</b><br>R <sub>өјд</sub><br>R <sub>өјс</sub>    |                                                                                                            | nt (Note 1a)<br>(Note 1) | 50<br>25    | °C/W<br>°C/W |  |
| R <sub>eja</sub><br>R <sub>ejc</sub><br>Packag           | Thermal Resistance, Junction-to-Ambie<br>Thermal Resistance, Junction-to-Case<br>e Marking and Ordering In | (Note 1)<br>formation    | 25          | °C/W         |  |
| R <sub>eJA</sub><br>R <sub>eJC</sub><br>Packag<br>Device | Thermal Resistance, Junction-to-Ambie<br>Thermal Resistance, Junction-to-Case                              | (Note 1)                 |             |              |  |

©2001 Fairchild Semiconductor International

SI9426DY Rev A (W)

## Features

- 10.5 A, 20 V.  $R_{DS(ON)} = 13.5 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$  $R_{DS(ON)} = 16 \text{ m}\Omega @ V_{GS} = 2.7 \text{ V}$
- High cell density for extremely low R<sub>DS(ON)</sub>
- High power and current handling capability in a widely used surface mount package

SI9426DY

| Symbol                                                         | Parameter                                                                                                                                                                                                     | <b>Test Conditions</b>                                                                                                                                                                             | Min        | Тур            | Max                      | Units |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|--------------------------|-------|
| Off Char                                                       | acteristics                                                                                                                                                                                                   |                                                                                                                                                                                                    |            |                |                          |       |
| BV <sub>DSS</sub>                                              | Drain–Source Breakdown Voltage                                                                                                                                                                                | $V_{GS} = 0 V, I_D = 250 \mu A$                                                                                                                                                                    | 20         |                |                          | V     |
| I <sub>DSS</sub>                                               | Zero Gate Voltage Drain Current                                                                                                                                                                               | $V_{DS} = 16 V$ , $V_{GS} = 0 V$<br>$V_{DS} = 16 V$ , $V_{GS} = 0 V$ , $T_J=55^{\circ}C$                                                                                                           |            |                | 1<br>10                  | μA    |
| I <sub>GSSF</sub>                                              | Gate-Body Leakage, Forward                                                                                                                                                                                    | $V_{GS} = 8 V, V_{DS} = 0 V$                                                                                                                                                                       |            |                | 100                      | nA    |
| I <sub>GSSR</sub>                                              | Gate–Body Leakage, Reverse                                                                                                                                                                                    | $V_{GS} = -8 V$ $V_{DS} = 0 V$                                                                                                                                                                     |            |                | -100                     | nA    |
| On Char                                                        | acteristics (Note 2)                                                                                                                                                                                          |                                                                                                                                                                                                    |            |                | 1                        | I     |
| V <sub>GS(th)</sub>                                            | Gate Threshold Voltage                                                                                                                                                                                        | $V_{DS} = V_{GS}, I_D = 250 \ \mu A$<br>$V_{DS} = V_{GS}, I_D = 250 \ \mu A, T_J = 125^{\circ}C$                                                                                                   | 0.4<br>0.3 | 0.6<br>0.5     | 1.5<br>0.8               | V     |
| R <sub>DS(on)</sub>                                            | Static Drain–Source<br>On–Resistance                                                                                                                                                                          | $V_{GS} = V_{GS}, I_D = 250 \ \mu A, I_J = 125 \ C$ $V_{GS} = 4.5 \ V, I_D = 10.5 \ A, T_J = 125^{\circ}C$ $V_{GS} = 4.5 \ V, I_D = 10.5 \ A, T_J = 125^{\circ}C$ $V_{GS} = 2.7 \ V, I_D = 10 \ A$ | 0.0        | 12<br>17<br>14 | 13.5<br>24<br>16         | mΩ    |
| I <sub>D(on)</sub>                                             | On–State Drain Current                                                                                                                                                                                        | $V_{GS} = 4.5 \text{ V}, \qquad V_{DS} = 5 \text{ V}$                                                                                                                                              | 30         |                |                          | Α     |
| g <sub>FS</sub>                                                | Forward Transconductance                                                                                                                                                                                      | $V_{DS} = 5 V$ , $I_D = 10.5 A$                                                                                                                                                                    |            | 43             |                          | S     |
| -                                                              | Characteristics                                                                                                                                                                                               |                                                                                                                                                                                                    |            | I              | 1                        | 1     |
| C <sub>iss</sub>                                               | Input Capacitance                                                                                                                                                                                             | $V_{DS} = 10 \text{ V}.$ $V_{GS} = 0 \text{ V}.$                                                                                                                                                   |            | 2150           |                          | pF    |
|                                                                | Output Capacitance                                                                                                                                                                                            | $V_{DS} = 10 V, V_{GS} = 0 V,$<br>f = 1.0 MHz                                                                                                                                                      |            | 890            |                          | pF    |
|                                                                | Reverse Transfer Capacitance                                                                                                                                                                                  |                                                                                                                                                                                                    |            | 165            |                          | pF    |
|                                                                |                                                                                                                                                                                                               |                                                                                                                                                                                                    |            |                |                          | P     |
| t <sub>d(on)</sub>                                             | <b>g Characteristics</b> (Note 2)<br>Turn–On Delay Time                                                                                                                                                       | $V_{DS} = 5 \text{ V}, \qquad I_D = 1 \text{ A},$                                                                                                                                                  |            | 11             | 30                       | ns    |
| t <sub>r</sub>                                                 | Turn-On Rise Time                                                                                                                                                                                             | $V_{GS} = 4.5 V, R_{GEN} = 6 \Omega$                                                                                                                                                               |            | 26             | 55                       | ns    |
| t <sub>r</sub><br>t <sub>d(off)</sub>                          | Turn-Off Delay Time                                                                                                                                                                                           |                                                                                                                                                                                                    |            | 145            | 220                      | ns    |
| t <sub>f</sub>                                                 | Turn-Off Fall Time                                                                                                                                                                                            |                                                                                                                                                                                                    |            | 40             | 100                      | ns    |
| Q <sub>g</sub>                                                 | Total Gate Charge                                                                                                                                                                                             | $V_{\rm DS} = 10 \text{ V}, \qquad I_{\rm D} = 10.5 \text{ A},$                                                                                                                                    |            | 43             | 60                       | nC    |
| Q <sub>gs</sub>                                                | Gate–Source Charge                                                                                                                                                                                            | $V_{GS} = 4.5 V$                                                                                                                                                                                   |            | 7              |                          | nC    |
| -                                                              | ů                                                                                                                                                                                                             |                                                                                                                                                                                                    |            | 8              |                          | nC    |
| 5                                                              | Ũ                                                                                                                                                                                                             | and Maximum Patings                                                                                                                                                                                |            |                |                          | _     |
|                                                                |                                                                                                                                                                                                               |                                                                                                                                                                                                    |            |                | 21                       | А     |
| V <sub>SD</sub>                                                | Drain–Source Diode Forward                                                                                                                                                                                    | $V_{GS} = 0 \text{ V},  I_S = 2.1 \text{ A}  (\text{Note 2})$                                                                                                                                      |            | 0.6            | 1.2                      | V     |
| Is<br>Vsp<br>Detes:<br>$R_{0JA}$ is the sum<br>the drain pins. | Voltage<br>of the junction-to-case and case-to-ambient the<br>$R_{\theta UC}$ is guaranteed by design while $R_{\theta CA}$ is dete<br>a) 50°C/W when<br>mounted on a 1 in <sup>2</sup><br>pad of 2 oz copper | The Diode Forward Current $V_{GS} = 0 V$ , $I_S = 2.1 A$ (Note 2)<br>permal resistance where the case thermal reference i                                                                          |            | 0.6            | er mounting<br>when moun | surfa |

SI9426DY Rev A (W)

#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx<sup>TM</sup> Bottomless<sup>TM</sup> CoolFET<sup>TM</sup>  $CROSSVOLT^{TM}$ DOME<sup>TM</sup> E<sup>2</sup>CMOS<sup>TM</sup> EnSigna<sup>TM</sup> FACT<sup>TM</sup> FACT Quiet Series<sup>TM</sup> FAST ® FASTr<sup>™</sup> GlobalOptoisolator<sup>™</sup> GTO<sup>™</sup> HiSeC<sup>™</sup> ISOPLANAR<sup>™</sup> MICROWIRE<sup>™</sup> OPTOLOGIC<sup>™</sup> OPTOPLANAR<sup>™</sup> PACMAN<sup>™</sup> POP<sup>™</sup> PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER® SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS

Definition of Terms

| Product Status            | Definition                                                                                                                                                                                                                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                                |
| First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                           | Formative or<br>In Design<br>First Production<br>Full Production                                                                                                                                                                  |