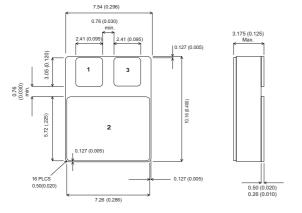


2N6299SMD 2N6301SMD 2N6299SMD05 2N6301SMD05

MECHANICAL DATA

Dimensions in mm (inches)


COMPLEMENTARY SILICON POWER TRANSISTORS

2N6299SMD - PNP TRANSISTOR

2N6301SMD - NPN TRANSISTOR

SMD1 (TO-276AB)

Pad 1 – Base Pad 2 – Collector Pad 3 – Emitter

Designed for general purpose amplifier and low frequency switching applications.

FEATURES

- High DC Current Gain
- Monolithic Construction with Built-in Base–Emitter Shunt Resistors

SMD05 (TO-276AA)

Pad 1 – Base Pad 2 – Collector Pad 3 – Emitter

ABSOLUTE MAXIMUM RATINGS($T_{case} = 25^{\circ}C$ unless otherwise stated)

$\overline{V_{CEO}}$	Collector – Emitter Voltage	80V
V_{CBO}	Collector – Base Voltage	80V
V_{EBO}	Emitter – Base Voltage	5V
I_{C}	Continuous Collector Current	8A
	Peak	16A
I_{B}	Base Current	120mA
P_{D}	Total Dissipation @ T _C = 25°C	75W
	Derate above 25°C	0.428W/°C
T_{STG} , T_{J}	Operating and Storage Junction Temperature Range	−65 to +200°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.sem

Website: http://www.semelab.co.uk

Document Number 2660

Issue 2

2N6299SMD 2N6301SMD

2N6299SMD05 2N6301SMD05

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit		
	OFF CHARACTERISTICS								
V _{CEO(sus)}	Collector – Emitter Sustaining Voltage *	I _C = 100mA	I _B = 0	80			V		
I _{CEO}	Collector Cut-off Current	V _{CE} = 40V	_			0.5	mA		
I _{CEX}	Collector Cut-off Current	V _{CE} = Rated V _{CB}	$V_{BE(off)} = 1.5V$ $T_C = 150^{\circ}C$			0.5 5.0	mA		
I _{EBO}	Emitter Cut-off Current	V _{BE} = 5V	I _C = 0			2	mA		
	ON CHARACTERISTICS				1				
h _{FE}	DC Current Gain*	$V_{CE} = 3V$	I _C = 4A	750		18000			
		V _{CE} = 3V	I _C = 8A	100					
V _{CE(sat)}	Collector – Emitter Saturation	I _C = 4A	I _B = 16mA			2.0	V		
	Voltage*	I _C = 8A	$I_B = 80 \text{mA}$			3.0] '		
V _{BE(sat)}	Base – Emitter Saturation Voltage*	I _C = 8A	$I_B = 80 \text{mA}$			4.0	V		
V _{BE(on)}	Base – Emitter On Voltage*	V _{CE} = 3V	I _C = 4A			2.8	V		
	DYNAMIC CHARACTERISTICS								
C _{ob}	Output Capacitance	$V_{CB} = 10V$ f = 0.1MHz	I _E = 0			200	pF		
	Magnitude of Common Emitter	$V_{CE} = 3V$							
h _{fe}	Small Signal Short Circuit Current	I _C = 3A		25		350	_		
	Transfer Ratio	f = 1MHz							
h _{fe}	Small Signal Current Gain*	$V_{CE} = 3V$ f = 1kHz	I _C = 3A	300			_		

Notes

* Pulse test: $t_p = 300 \mu s$, Duty Cycle = 2%

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

Document Number 2660

Issue 2