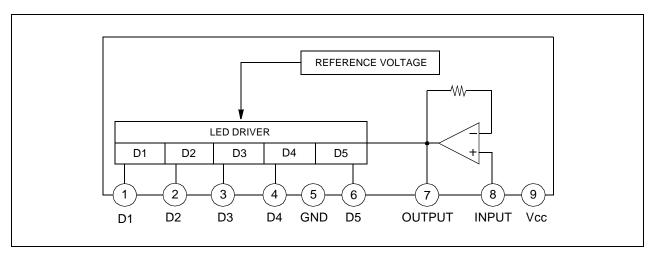

## **INTRODUCTION**

The S1A2284A01 and S1A2284A02 are monolithic integrated circuits designed for 5-dot LED level meter drivers with a built-in rectifying amplifier. It is suitable for AC/DC level meters such as VU meters or signal meters.

#### **FEATURES**

- High gain rectifying amplifier included (G<sub>V</sub> = 26dB)
- · Low radiation noise when LED turns on
- Logarithmic indicator for 5-dot bar type LED (-10, -5, 0, 3, 6dB)
- Constant current output S1A2284A01: lo = 15mA (Typ) S1A2284A02: lo = 7mA (Typ)
- Wide operating supply voltage range:
  V<sub>CC</sub> = 3.5V 1 6V
- · Minimum number of external parts required




#### **ORDERING IN FORMATION**

| Device          | Package | Operating Temperature | I <sub>D</sub> |
|-----------------|---------|-----------------------|----------------|
| S1A2284A01-I0U0 | 9-SIP   | – 20°C – + 80°C       | 15mA           |
| S1A2284A02-I0U0 | 5-011   | - 20 0 - + 00 0       | 7mA            |



# **BLOCK DIAGRAM**



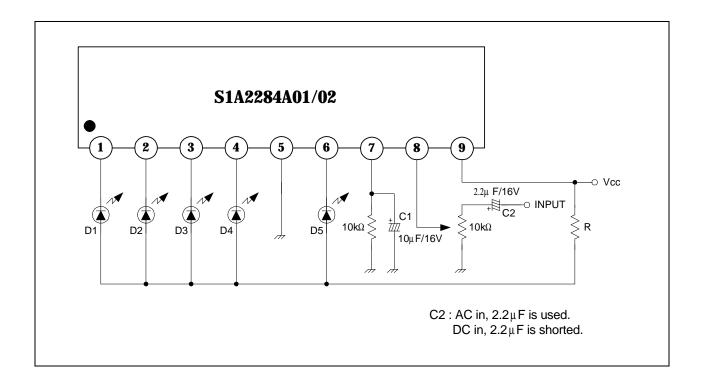
NOTE: Capacitor to be omitted when used as a DC input signal meter

# **ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)**

| Characteristic            | Symbol           | Value                  | Unit |
|---------------------------|------------------|------------------------|------|
| Supply Voltage            | V <sub>CC</sub>  | 18                     | V    |
| Amp Input Voltage         | V <sub>8-5</sub> | -0.5 - V <sub>CC</sub> | V    |
| Pin 7 Voltage             | V <sub>7-5</sub> | 6                      | V    |
| D Terminal Output Voltage | V <sub>D</sub>   | 18                     | V    |
| Circuit Current           | I <sub>CC</sub>  | 12                     | mA   |
| D Terminal Output Current | I <sub>D</sub>   | 20                     | mA   |
| Power Dissipation         | P <sub>d</sub>   | 1100                   | mW   |
| Operating Temperature     | T <sub>OPR</sub> | -20 - + 80             | °C   |
| Storage Temperature       | T <sub>STG</sub> | -40 - + 125            | °C   |

**NOTE**:  $11\text{mW/}^{\circ}\text{C}$  is decreased at higher temperature than  $T_a = 25^{\circ}\text{C}$ .




# **ELECTRICAL CHARACTERISTICS**

 $(T_a = 25^{\circ}C, V_{CC} = 6V, f = 1kHz, unless otherwise specified)$ 

| Charact               | eristic |                                            | Symbol               | Test Conditions        | Min. | Тур. | Max. | Unit |
|-----------------------|---------|--------------------------------------------|----------------------|------------------------|------|------|------|------|
| Circuit Current       |         |                                            | I <sub>CCQ</sub>     | $V_i = 0V$             | _    | 6    | 8.5  | mA   |
| D Output Current      | S1A2    | 284A01                                     | I <sub>O</sub>       | V <sub>i</sub> = 0.15V | 11   | 15   | 18.5 | mA   |
|                       | S1A2    | 284A02                                     |                      |                        | 5    | 7    | 9.5  |      |
| Input Bias Current    |         |                                            | I <sub>BIAS</sub>    | _                      | -1   | _    | 0    | μΑ   |
| Amp Gain              |         |                                            | G <sub>V</sub>       | V <sub>I</sub> = 0.1 V | 24   | 26   | 28   | dB   |
| Comparator ON Level V |         |                                            | V <sub>CL(ON)1</sub> | -                      | -12  | -10  | -8   | dB   |
|                       |         | el V <sub>CL (ON)</sub> V <sub>CL(ON</sub> | V <sub>CL(ON)2</sub> |                        | -6   | -5   | -4   |      |
|                       |         |                                            | V <sub>CL(ON)3</sub> |                        | _    | 0    | _    |      |
|                       |         |                                            | V <sub>CL(ON)4</sub> |                        | 2.5  | 3    | 3.5  |      |
|                       |         |                                            | V <sub>CL(ON)5</sub> |                        | 5    | 6    | 7    |      |

 $\textbf{NOTE} : \text{Definition of 0dB: input voltage level when V}_{\text{CL (ON)3}} \text{ turn ON (50mV)}$ 

## **TEST CIRCUIT**





The recommended value of R at  $T_a$  (max) =  $60^{\circ}$ C.

| V <sub>CC</sub> (V) | 8 – 12 | 10 –14 | 12 – 16 |
|---------------------|--------|--------|---------|
| $R(\Omega)$         | 47     | 68     | 91      |

By changing the time constant  $C_1$  and  $C_2$ , the response, attack and release time may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.

