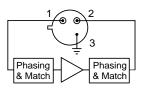
### The RS TO39-3 Series of Two-Port SAW Resonators


### **Electrical Connections**

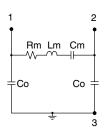
Either pin 1 or pin 2 may be used for input or output with these bidirectional, two-port, three-terminal, SAW resonators. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component values for different resonator connections.

| Pin | Connection      | Bottom View     |
|-----|-----------------|-----------------|
| 1   | Input or Output | Pin 1 💿 💿 Pin 2 |
| 2   | Output or Input |                 |
| 3   | Case Ground     |                 |

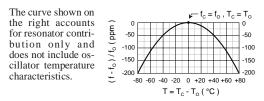

### **Typical Test Circuit**

The test circuit inductor,  $L_{TEST},$  is used to resonate with the static capacitance,  $C_{\rm O}$  (which is measured at low frequency with a capacitance meter).

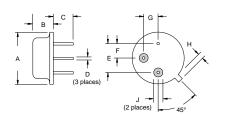



### **Typical Application Circuits**

The following circuit illustrates a basic oscillator topology. This resonator is suitable for oscillator designs requiring 0° phase shift at resonance in a two-port configuration.




### Equivalent LC Model


The following equivalent LC model is valid near resonance:



### **Temperature Characteristics**



### Case Design



| Dimension | Millimeters  |         | Inches        |         |  |
|-----------|--------------|---------|---------------|---------|--|
|           | Minimum      | Maximum | Minimum       | Maximum |  |
| А         |              | 9.30    |               | 0.366   |  |
| В         |              | 3.18    |               | 0.125   |  |
| С         | 2.50         | 3.50    | 0.098         | 0.138   |  |
| D         | 0.46 Nominal |         | 0.018 Nominal |         |  |
| Е         | 5.08 Nominal |         | 0.200 Nominal |         |  |
| F         | 2.54 Nominal |         | 0.100 Nominal |         |  |
| G         | 2.54 Nominal |         | 0.100 Nominal |         |  |
| Н         |              | 1.02    |               | 0.040   |  |
| J         | 1.40         |         | 0.055         |         |  |

Downloaded from Elcodis.com electronic components distributor

## RIFIM.

- Designed for 680.0 MHz CATV Converter LOs
- Nominal Insertion Phase Shift of 0° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case

The RS1035-5 is a two-port surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at or near 680 MHz. Typical applications include the second LO in CATV set-top convertors with channel 4 output.

| Absolute Maximum Ratings                                   |            |       |  |  |  |
|------------------------------------------------------------|------------|-------|--|--|--|
| Rating                                                     | Value      | Units |  |  |  |
| CW RF Power Dissipation (See: Typical Test Circuit.)       | +5         | dBm   |  |  |  |
| DC Voltage between Any Two Pins (Observe ESD Precautions.) | ± 30       | VDC   |  |  |  |
| Case Temperature 1                                         | -40 to +85 | °C    |  |  |  |

#### **Electrical Characteristics**

| C                                             | haracteristic                        | Sym            | Notes      | Minimum | Typical            | Maximum | Units   |
|-----------------------------------------------|--------------------------------------|----------------|------------|---------|--------------------|---------|---------|
| Center Frequency (+25°C)                      | Absolute Frequency                   | f <sub>C</sub> | 2, 3, 4, 5 | 680.000 |                    | 680.200 | MHz     |
|                                               | Tolerance from 680.100 MHz           | $\Delta f_{C}$ |            |         |                    | ±100    | kHz     |
| Insertion Loss                                |                                      | IL             | 2, 5, 6    |         | 9.1                | 12.5    | dB      |
| Quality Factor                                | Unloaded Q                           | Q <sub>U</sub> | 5, 6, 7    |         | 8,600              |         |         |
|                                               | 50 Ω Loaded Q                        | QL             |            |         | 5,500              |         |         |
| Temperature Stability                         | Turnover Temperature                 | To             | 6, 7, 8    | 48      | 63                 | 78      | °C      |
|                                               | Turnover Frequency                   | fo             |            |         | f <sub>c</sub> +36 |         | kHz     |
|                                               | Frequency Temperature Coefficient    | FTC            |            |         | 0.037              |         | ppm/°C2 |
| Frequency Aging                               | Absolute Value during the First Year | f <sub>A</sub> | 6          |         | ≤ 10               |         | ppm/yr  |
| DC Insulation Resistance between Any Two Pins |                                      |                | 5          | 1.0     |                    |         | MΩ      |
| RF Equivalent RLC Model                       | Motional Resistance                  | R <sub>M</sub> | 5, 7, 9    |         | 186                | 322     | Ω       |
|                                               | Motional Inductance                  | L <sub>M</sub> |            |         | 374.334            |         | μH      |
|                                               | Motional Capacitance                 | См             |            |         | 0.146297           |         | fF      |
|                                               | Shunt Static Capacitance             | Co             | 5, 6, 9    | 1.3     | 1.6                | 1.9     | pF      |
| Lid Symbolization (in Addi                    | tion to Lot and/or Date Codes)       |                |            |         | RFM 1035-5         |         |         |

## CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

### NOTES:

- Frequency aging is the change in  $f_C$  with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years. 1.
- The frequency  $f_C$  is the frequency of minimum IL with the resonator in the specified test fixture in a 50  $\Omega$  test system with VSWR  $\leq$  1.2:1. 2. Typically, foscillaror of fransmitter is less than the resonator f<sub>c</sub>.
  One or more of the following United States patents apply: 4,454,488; 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer. 4.
- Unless noted otherwise, case temperature  $T_C = +25^{\circ}C \pm 2^{\circ}C$ . 5.
- The design, manufacturing process, and specifications of this device are subject to change without notice. 6.
- Derived mathematically from one or more of the following directly measured parameters: f<sub>C</sub>, IL, 3 dB bandwidth, f<sub>C</sub> versus T<sub>C</sub>, and C<sub>O</sub>. 7.
- Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature,  $T_c$ , may be calculated from:  $f = f_0 [1 FTC (T_0 T_c)^2]$ . Typically, oscillator  $T_0$  is 20° less than the specified resonator  $T_0$ . 8.
- This equivalent RLC model approximates resonant frequency and is provided for reference only. The capacitance  $C_0$  is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance. 9.

# **RS1035-5**

## 680.1 MHz SAW Resonator

