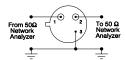
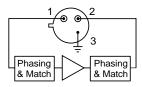
The RS TO39-3 Series of Two-Port SAW Resonators

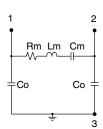
Electrical Connections


Either pin 1 or pin 2 may be used for input or output with these bidirectional, two-port, three-terminal, SAW resonators. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component values for different resonator connections.

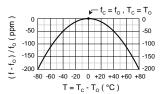
Pin	Connection			
1	Input or Output			
2	Output or Input			
3	Case Ground			


Typical Test Circuit

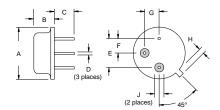
The test circuit inductor, $L_{TEST},$ is used to resonate with the static capacitance, C_{O} (which is measured at low frequency with a capacitance meter).


Typical Application Circuits

The following circuit illustrates a basic oscillator topology. This resonator is suitable for oscillator designs requiring 0° phase shift at resonance in a two-port configuration.


Equivalent LC Model

The following equivalent LC model is valid near resonance:



Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.

Case Design

Dimension	Millin	neters	Inches		
	Minimum	Maximum	Minimum	Maximum	
A		9.30		0.366	
В		3.18		0.125	
C	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		

- Designed for 668.0 MHz CATV Converter LOs
- Nominal Insertion Phase Shift of 0° at Resonance
- · Quartz Stability
- · Rugged, Hermetic, Low-Profile TO39 Case

The RS1033-5 is a two-port surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at or near 668 MHz. Typical applications include the second LO in CATV set-top convertors with channel 2 output.

Absolute Maximum Ratings

Rating	Value	Units				
CW RF Power Dissipation (See: Typical Test Circuit.)	+5	dBm				
DC Voltage between Any Two Pins (Observe ESD Precautions.)	±30	VDC				
Case Temperature ¹	-40 to +85	°C				

RS1033-5

668.1 MHz SAW Resonator

Electrical Characteristics

C	haracteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f_C	2215	668.000		668.200	MHz
	Tolerance from 668.100 MHz	Δf_{C}	2, 3, 4, 5			±100	kHz
Insertion Loss		IL	2, 5, 6		8.5	12.5	dB
Quality Factor	Unloaded Q	Q _U 5.67		9,300			
	50 Ω Loaded Q	Q_{L}	5, 6, 7		5,800		
Temperature Stability	Turnover Temperature	To		50	65	80	°C
	Turnover Frequency	fo	6, 7, 8		f _C +41		kHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C2
Frequency Aging	Absolute Value during the First Year	$ f_A $	6		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M			165	322	Ω
	Motional Inductance	L _M	5, 7, 9		368.537		μН
	Motional Capacitance	C _M			0.153984		fF
	Shunt Static Capacitance	Co	5, 6, 9	1.3	1.6	1.9	pF

Lid Symbolization (in Addition to Lot and/or Date Codes) RFM 1033-5

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

- Frequency aging is the change in f_C with time and is specified at $+65^{\circ}C$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ}C$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. $Typically, f_{OSCIILATOR} \ or \ f_{TRANSMITTER} \ is less than the resonator \ f_{C}.$ 3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Unless noted otherwise, case temperature T_{C} = +25 °C \pm 2 °C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.
- Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 \left[1 FTC \left(T_0 T_C \right)^2 \right]$. Typically, oscillator T_0 is 20° less than the specified resonator T_0 .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

#