

PA45DIE

HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

NO LONGER SUPPORTED FOR DESIGN-IN

ABSOLUTE MAXIMUM RATINGS

NOTE: Because of wafer probing test limitations, full power tests are not possible. Refer to parent product data sheet PA45 for typical AC, DC and power performance specifications.

DC WAFER PROBED SPECIFICATIONS

PARAMETER ¹	MIN	MAX	UNITS	
OFFSET VOLTAGE, initial	$V_{S} = \pm 20 \text{V to } \pm 75 \text{ V}$		25	mV
OFFSET VOLTAGE, vs. supply	$V_S = \pm 20V$		25	μV/V
BIAS CURRENT, initial	V _S = ±20V		1	nA
OFFSET CURRENT, initial	V _S = ±20V		1	nA
SUPPLY CURRENT, quiescent	V _S = ±20V		26	mA
COMMON MODE REJECTION	$V_{CM} = \pm 45V, V_{S} = \pm 75V$	84		dB
VOLTAGE SWING, positive	$V_{S} = \pm 50V, I_{O} = 40mA$	40		V
VOLTAGE SWING, negative	$V_S = \pm 50V, I_O = -40mA$	-40		V
ALARM, sink current	$V_{S} = \pm 20 \text{V to } \pm 75 \text{ V}$	90		μA
ALARM, leakage	$V_{s} = \pm 20 \text{V to } \pm 75 \text{ V}$		1	uA

NOTES: 1. Current limit, I_o pin, and shutdown verified as operational.

DIE	A	□ 1		25 □
LAVOLIT	T	□ 2		24 🗆
LAYOUT				23 🗆
		□ 3		23 🗆
		□ 4		
	220 Mil 5588µ			
		□ 5	<u>_</u>	
			11 🗌	22 🗆
		6		21 🗌
			12 🗌	
		7	U	20 □
				20
			13 🗌	
		8		40 🗆
			44□	19 🗌
			14 🗌	
		9		_
			15 🗌	18
			13 🗓	_
		10	46 🗆	47 🗆
			16 🗌	17 🗌
		-	220 Mil	
			5588µ	

Thickness: 11 Mil (280µ)
Backside: Silicon (no back metal)
Small Bond pads: 5 Mil sq (127µ) Al

Large Bond pads: 5 x 11 Mil (127µ x 280µ) Al

NOTE: Tie backside to $-V_s$ through die attach medium. Recommended die attach material is either conductive epoxy or silver-glass. Lowest thermal resistance will be obtained with silver-glass.

Recommended wire is 2 mil aluminum. All large bond pads must be used to avoid excessive current density in the die metalization.

Pad	Function	Pad	Function
1	– Input	11-16	Output Drive
2	+ Input	17-21	+V _s
3*	Alarm	22*	I _o
4*	Shutdown	23	Compensation
5	NC	24	Compensation
6-10	$-V_s$	25	Current Limit Sense

* Pad 3 (Alarm) is tied to a switched current source. When an over-temperature condition exits the current source turns on and sinks $90\mu\text{A}$ to $-\text{V}_{\text{S}}$. Pad 4 (Shutdown) will shut off the output stage when at least $90\mu\text{A}$ is pulled from pad 4 to any voltage at least 3 volts less positive than $+\text{V}_{\text{S}}$ (ground, for example). When pad 3 is tied to pad 4 an over-temperature condition will shut off the output stage until power is cycled and the fault is removed. Normally pad 22 (I_{Q}) is left open. When pad 22 is tied to pad 23 the quiescent current in the output stage is disabled. The result is lower quiescent but class C biasing of the output stage.

PA45DIE is a MOSFET amplifier. ESD handling procedures must be observed.