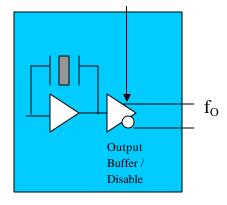


# VCC6-107 +/-20 ppm LVPECL Oscillator

#### **Features**

- +/-20 ppm, including aging
- 3<sup>rd</sup> Overtone Crystal for best jitter performance
- Output frequencies to 200 MHz
- Low Jitter
- Enable/Disable output for test and board debug
- -10/70 °C operating temperature
- Hermetically sealed ceramic SMD package
- Product is compliant to RoHS directive (P) and fully compatible with lead free assembly

# **Applications**


- WLAN
- SONET/SDH/DWDM
- Ethernet, Gigabit Ethernet
- Storage Area Network
- Digital Video
- Broadband Access

## **Description**

Vectron's VCC6 Crystal Oscillator (XO) is quartz stabilized square wave generator with a LV-PECL output, operating off a 3.3 volt supply.



The VCC6-107 Crystal Oscillator

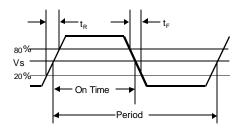


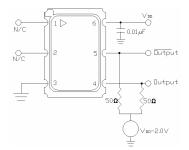
## **Performance Characteristics**

| Table 1. Electrical Performance     |                  |                                |               |                        |       |
|-------------------------------------|------------------|--------------------------------|---------------|------------------------|-------|
| Parameter                           | Symbol           | Min                            | Typical       | Maximum                | Units |
| Frequency                           | f <sub>o</sub>   | 40                             |               | 200                    | MHz   |
| Supply Voltage <sup>1</sup>         | V <sub>DD</sub>  | 3.135                          | 3.3           | 3.465                  | V     |
| Supply Current                      | I <sub>DD</sub>  |                                |               | 98                     | mA    |
| Output Logic Levels                 |                  |                                |               |                        |       |
| Output Logic High <sup>2</sup>      | V <sub>OH</sub>  | V <sub>DD</sub> -1.025         |               | V <sub>DD</sub> -0.880 | V     |
| Output Logic Low <sup>2</sup>       | V <sub>OL</sub>  | V <sub>DD</sub> -1.810         |               | V <sub>DD</sub> -1.620 | V     |
| Transition Times                    |                  |                                |               |                        |       |
| Rise Time <sup>2</sup>              | t <sub>R</sub>   |                                |               | 600                    | ps    |
| Fall Time <sup>2</sup>              | t <sub>F</sub>   |                                |               | 600                    | ps    |
| Output Load                         |                  | 50 ohms to V <sub>DD</sub> -2V |               |                        |       |
| Symmetry or Duty Cycle <sup>3</sup> | SYM              | 45                             | 50            | 55                     | %     |
| Operating temperature               |                  |                                | -10/70        |                        |       |
| Stability <sup>4</sup>              |                  |                                |               | +/-20                  | ppm   |
| RMS Jitter, 12kHz to 20 MHz         |                  |                                | 0.3           | 0.7                    | ps    |
| Period RMS Jitter                   |                  |                                | 2.7           |                        | ps    |
| Cycle to Cycle RMS Jitter           |                  |                                | 4.8           |                        | ps    |
| Output Enabled <sup>5</sup>         |                  | 0.7*VDD                        |               |                        | V     |
| Output Disabled <sup>5</sup>        |                  |                                |               | 0.3*VDD                | V     |
| Output Enable/Disable time          |                  |                                |               | 400                    | ns    |
| Enable/Disable Leakage Current      | I <sub>E/D</sub> |                                |               | ±200                   | uA    |
| Package Size                        |                  |                                | 5.0 x 7.0 x 1 | .5                     | mm    |

1. A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended.

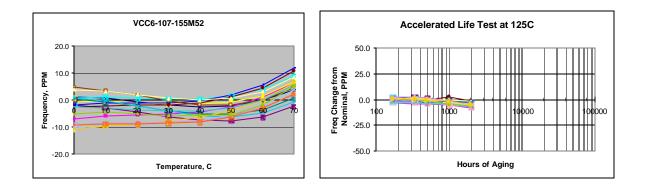
2. Figure 1 defines these parameters. Figure 2 illustrates the operating conditions under which


these parameters are tested and specified.


3. Symmetry is defined as  $\,{\rm Vs},\,{\rm On}$  Time/Period.

4. Includes calibration tolerance, operating temperature, supply voltage variations, aging (10 years @ 40 degreesC) and shock and vibration (not under operation).

5. Output will be enabled if enable/disable is left open.


6. Jitter is measured using a LeCroy8600 sampling 50,000 cycles.





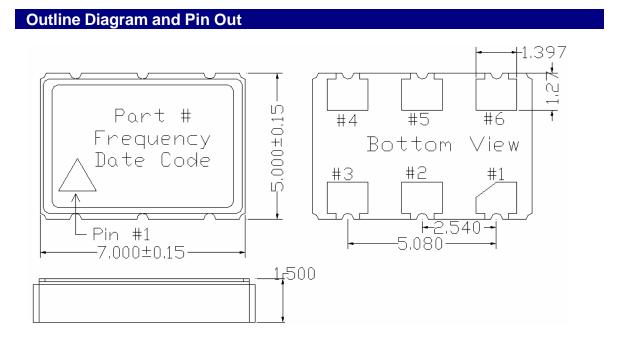
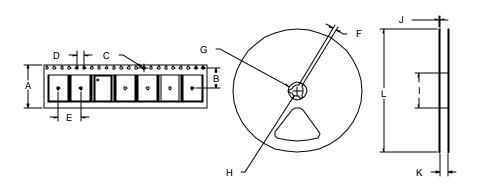

#### Figure 1. Output Waveform

Figure 2. Typical Output Test Conditions (25±5°C)




#### Figure 3. Temperature Stability





| Pin # | Symbol          | Function                       |  |  |
|-------|-----------------|--------------------------------|--|--|
| 1     | E/D             | Enable/Disable function        |  |  |
| 2     | NC              | No Connection                  |  |  |
| 3     | GND             | Ground                         |  |  |
| 4     | f <sub>o</sub>  | Output Frequency               |  |  |
| 5     | Cf <sub>o</sub> | Complementary Output Frequency |  |  |
| 6     | V <sub>DD</sub> | Supply Voltage                 |  |  |

# **Tape and Reel**



| Tape and Reel Dimensions (mm)   |    |     |     |   |   |   |       |    |    |   |    |     |      |
|---------------------------------|----|-----|-----|---|---|---|-------|----|----|---|----|-----|------|
| Tape Dimensions Reel Dimensions |    |     |     |   |   |   | # Per |    |    |   |    |     |      |
| Product                         | Α  | В   | С   | D | Е | F | G     | н  |    | J | K  | L   | Reel |
| VCC6                            | 16 | 7.5 | 2.0 | 4 | 8 | 2 | 21    | 13 | 55 | 2 | 17 | 180 | 250  |

# Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

| Table 2. Absolute Maximum Ratings |                 |                              |      |  |  |  |
|-----------------------------------|-----------------|------------------------------|------|--|--|--|
| Parameter                         | Symbol          | Ratings                      | Unit |  |  |  |
| Power Supply                      | V <sub>DD</sub> | -0.5 to +7.0                 | Vdc  |  |  |  |
| Enable/Disable                    | V <sub>IN</sub> | -0.5 to V <sub>DD</sub> +0.5 | Vdc  |  |  |  |
| Storage Temperature               | Tstorage        | -55/125                      | С°   |  |  |  |

### Reliability

The VCC6 qualification tests include the following:

| Table 3. Environnemental Compliance |                         |  |  |  |  |
|-------------------------------------|-------------------------|--|--|--|--|
| Parameter                           | Conditions              |  |  |  |  |
| Mechanical Shock                    | MIL-STD-883 Method 2002 |  |  |  |  |
| Mechanical Vibration                | MIL-STD-883 Method 2007 |  |  |  |  |
| Solderability                       | MIL-STD-883 Method 2003 |  |  |  |  |
| Gross and Fine Leak                 | MIL-STD-883 Method 1014 |  |  |  |  |
| Resistance to Solvents              | MIL-STD-883 Method 2016 |  |  |  |  |

## **Handling Precautions**

Although ESD protection circuitry has been designed into the the VCC6, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

| Table 4. ESD Ratings |         |                         |  |  |  |  |
|----------------------|---------|-------------------------|--|--|--|--|
| Model                | Minimum | Conditions              |  |  |  |  |
| Human Body Model     | 1000    | MIL-STD-883 Method 3115 |  |  |  |  |
| Charged Device Model | 1000    | JESD 22-C101            |  |  |  |  |

### **Suggested IR profile**

The VCC6 has been qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements and parameters are listed in Table 5. As the contact pads are gold over nickel, devices can be reflowed at lower temperatures. The VCC6 is hermetically sealed so an aqueous wash is not an issue.

| Table 5. Reflow Profile  |                    |                         |  |  |  |  |
|--------------------------|--------------------|-------------------------|--|--|--|--|
| Parameter                | Symbol             | Value                   |  |  |  |  |
| PreHeat Time             | t <sub>s</sub>     | 60 sec Min, 180 sec Max |  |  |  |  |
| Ramp Up                  | R <sub>UP</sub>    | 3 °C/sec Max            |  |  |  |  |
| Time Above 217 °C        | tL                 | 60 sec Min, 150 sec Max |  |  |  |  |
| Time To Peak Temperature | t <sub>AMB-P</sub> | 480 sec Max             |  |  |  |  |
| Time at 260°C (max)      | t <sub>P</sub>     | 10 sec Max              |  |  |  |  |
| Time at 240°C (max)      | t <sub>p2</sub>    | 60 sec Max              |  |  |  |  |
| Ramp Down                | R <sub>DN</sub>    | 6 °C/sec Max            |  |  |  |  |

# VCC6-107 Crystal Oscillator

| Table 6. Standard Frequencies (MHz) |          |         |         |          |  |  |  |
|-------------------------------------|----------|---------|---------|----------|--|--|--|
| 87.000                              | 155.520  | 156.250 | 159.375 | 161.1328 |  |  |  |
| 163.235                             | 173.3708 | 173.438 | 175.000 | 187.500  |  |  |  |

Other frequencies may be available upon request. Standard frequencies are frequencies which the crystal has been designed and does not imply a stock position.

### **Ordering Information**

# VCC6 - 107 - xxxMxx

Product Family

LVPECL Crystal Oscillator

Frequency in MHz example: 155M52= 155.520 MHz

Stability Option/Temperature

+/-20ppm over -10 to 70°C



www.vectron.com

USA: Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON EUROPE: Landstrasse, D-74924, Neckarbischofsheim, Germany • Tel: 49 (0) 7268 8010 • Fax: 49 (0) 7268 801281 ASIA: Vectron Asia Pacific Sales 1F~2F. No.8 Workshop No.308 Fenju Rd., WaiGaoQiao Free Trade Zone, Pudong New Area Shanghai, China 200131 •Tel: 8621 50480777 • Fax: 8621 50481881

Vectron International reserves the right to make changes to the product(s) and/or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. VCC6-107 (REVISION DATE: April 17, 2006)

Vectron International 267 Lowell Rd, Hudson NH 03051

Tel: 1-88-VECTRON-1

e-mail vectron@vectron.com

For Additional Information, Please Contact: