

THYRISTOR SURGE SUPPRESSOF

APPLICATIONS

- ✓ T1/E1 Trunk & Line Card
- ✓ SLIC Line Card
- ✓ DBX Branch Exchange Switches
- ✓ FCC Part 68 Customer Premise Equipment
- ✓ Line Interface Modem
- ✓ xDSL Architecture Interface
- ✓ ISDN Architecture Interface

IEC COMPATIBILITY (EN61000-4)

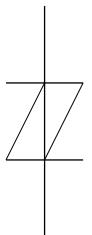
✓ 61000-4-4 (EFT): 40A - 5/50ns

✓ 61000-4-5 (Surge): 8/20µs - 95A, L4(Line-Gnd), 48A, L4(Line-Line) & 83A, L2(Power)

FEATURES

- ✓ Complies with: FCC Part 68, UL 1459, Bellcore 1089, ITU-K.20 & K.21
- ✓ UL File Recognition # E208219
- ✔ Peak Off-State Voltage from 25 to 300 Volts
- ✓ Surge Current Capability (See Table 1)
- ✓ ESD Protection > 40 kilovolts
- ✓ Low Capacitance for T1/E1 Trunk & Line Card Applications
- ✓ Bidirectional Configurations
- ✔ RoHS Compliant

MECHANICAL CHARACTERISTICS


- ✓ Molded Plastic DO-214AA Package
- ✓ Weight 2.5 grams (Approximate)
- ✔ Available in Lead-Free Pure-Tin Plating(Annealed)
- ✓ Solder Reflow Temperature:

Pure-Tin - Sn, 100: 260-270°C

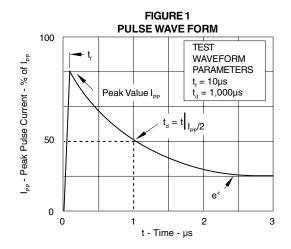
- ✓ Leaded Device Availability
- ✓ Flammability Rating UL 94V-0
- ✓ 12mm Tape and Reel Per EIA Standard 481
- ✓ Marking: Logo & Marking Code

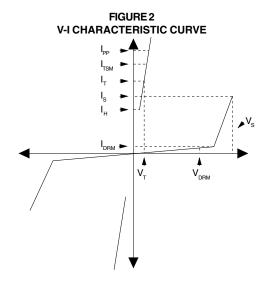
DEVICE SYMBOL (BIDIRECTIONAL)

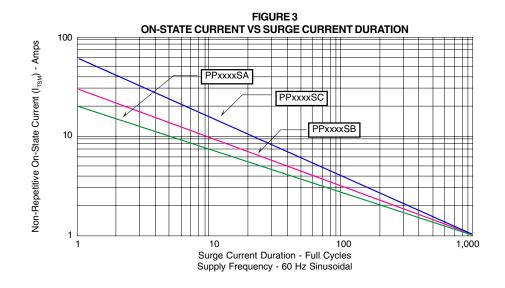
TABLE 1 - SURGE RATINGS								
SERIES	l _{pp}	l _{pp}	l _{pp}	l _{pp}	l _{pp}	I _{TSM}	di/dt	dv/dt
	2 X 10µs	8 X 20µs	10 X 160µs			60 Hz	AMPS/µs	V/µs
	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	(See Note 1)	(See Note 1)
SA	150	150	100	50	50	20	500	2000
SB	300	300	150	100	80	32	500	2000
SC	500	400	200	200	100	60	500	2000
	SA SB	2 X 10µs AMPS SA 150 SB 300	2 X 10µs 8 X 20µs AMPS AMPS SA 150 150 SB 300 300	SERIES	SERIES I _{PP} 2 X 10μs AMPS I _{PP} 8 X 20μs AMPS I _{PP} 10 X 160μs AMPS I _{PP} 10 X 560μs AMPS SA SB 300 300 150 100 150 100 50 100 100 100	SERIES I _{PP} 2 X 10μs AMPS I _{PP} 10 X 160μs AMPS I _{PP} 10 X 560μs AMPS I X 1000μs AMPS SA SB 300 300 150 100 80 150 150 100 80 100 80 100 80	SERIES I _{PP} 2 X 10μs AMPS I _{PP} 10 X 160μs AMPS I _{PP} 10 X 560μs AMPS I _{PP} 10 X 1000μs AMPS I _P	SERIES I

Note 1: Critital Rate of Rise for On-State Current (di/dt) and Off-State Voltage (dv/dt).

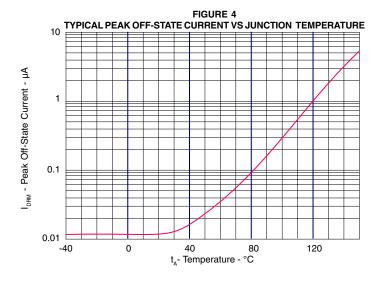
05081.R10 2/07 1 www.protekdevices.com

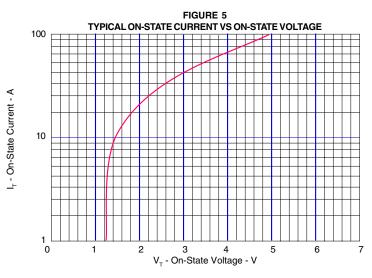

DEVICE CHARACTERISTICS

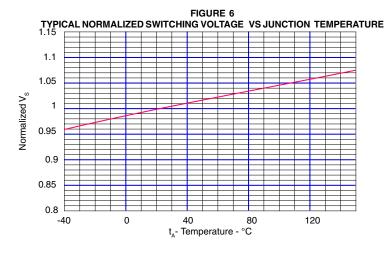

MAXIMUM RATINGS @ 25°C Unless Otherwise Specified							
PARAMETER	SYMBOL	VALUE	UNITS				
Surge Current - 50/60 Hz	I _{TSM}	60	Watts				
Junction Temperature	T _A	-40 to 150	∞				
Storage Temperature	T _{STG}	-55 to 150	∞				
Thermal Resistance (Junction) - SA & SB Series	R _{qJC}	28	°C/Watt				
Thermal Resistance (Junction) - SC Series	R _{auc}	26	°C/Watt				
Thermal Resistance (Ambient) - SA & SB Series	$R_{\scriptscriptstyleQJA}$	90	°C/Watt				
Thermal Resistance (Ambient) - SC Series	$R_{\scriptscriptstyleQJA}$	85	°C/Watt				

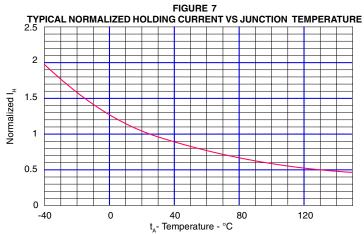

	ELEC	TRICAL C	HARACTER	RISTICS PI	ER LINE @	25°C Unless	Otherwise Sp	ecified	
PART NUMBER	DEVICE MARKING CODE	REPETITIVE PEAK OFF-STATE VOLTAGE	SWITCHING VOLTAGE	MINIMUM HOLDING CURRENT (See Fig. 7)	SWITCHING CURRENT	MAXIMUM OFF-STATE CURRENT (See Fig. 4)	MAXIMUM ON-STATE VOLTAGE (See Fig. 5)	ON-STATE CURRENT	TYPICAL CAPACITANCE (See Note 1)
		V _{DRM} VOLTS	@100V/μs V _s VOLTS	di/dt = 1A/ms I _H mA	I _s mA	@V _{DRM} Ι _{DRM} μΑ	$@I_{\scriptscriptstyle T} \ V_{\scriptscriptstyle T} \ VOLTS$	I _T AMPS	@2V, 1 MHz C pF
PP0640SA PP0720SA PP0800SA PP1100SA PP1300SA	GC GD GE GF GG	58 65 75 90 120	77 88 98 130 160	150 150 150 150 150	800 800 800 800 800	5 5 5 5 5	4 4 4 4 4	2.2 2.2 2.2 2.2 2.2	60 60 60 60 40
PP1500SA PP1800SA PP2300SA PP2600SA PP3100SA	GH GI GJ GK GL	140 160 190 220 275	180 220 260 300 350	150 150 150 150 150	800 800 800 800 800	5 5 5 5 5	4 4 4 4 4	2.2 2.2 2.2 2.2 2.2	40 40 30 30 30
PP3500SA PP0300SB PP0640SB PP0720SB PP0800SB	GM GN GP GQ GR	300 25 58 65 75	400 40 77 88 98	150 50 150 150	800 800 800 800 800	5 5 5 5	4 4 4 4	2.2 2.2 2.2 2.2 2.2 2.2	30 110 60 60 60
PP0800SB PP1100SB PP1300SB PP1500SB PP1800SB PP2300SB	GR GS GT GU GV GW	75 90 120 140 160 190	98 130 160 180 220 260	150 150 150 150 150	800 800 800 800 800	5 5 5 5 5	4 4 4 4 4	2.2 2.2 2.2 2.2 2.2 2.2	60 60 40 40 40 30
PP2300SB PP2600SB PP3100SB PP3500SB	GX GY GZ HC	220 275 300	300 350 400	150 150 150 150	800 800 800 800	5 5 5	4 4 4 4	2.2 2.2 2.2 2.2 2.2	30 30 30 30
PP0640SC PP0720SC PP0800SC PP1100SC PP1300SC PP1500SC	HD HE HF HG HH	58 65 75 90 120 140	77 88 98 130 160 180	150 150 150 150 150	800 800 800 800 800	5 5 5 5 5	4 4 4 4 4	2.2 2.2 2.2 2.2 2.2 2.2	120 120 120 120 80 80
PP1800SC PP1800SC PP2300SC PP2600SC PP3100SC PP3500SC	HI HJ HK HL HM	160 190 220 275 300	220 260 300 350 400	150 150 150 150 150	800 800 800 800 800	5 5 5 5 5	4 4 4 4 4	2.2 2.2 2.2 2.2 2.2 2.2	80 60 60 60 60

Note 1: Capacitance imbalance between positive and negative polarities is typically < 15pF.


GRAPHS







GRAPHS

APPLICATION NOTE

FIGURE 1: UL 1459 & FCC Part 68 - Metallic Protection

The TSS (Thyristor Surge Suppressor) device is located across the tip-to-ring after a limiting resistor and fuse combination. $R_{\mbox{\scriptsize TIP}}$ and $R_{\mbox{\scriptsize RING}}$ resistors are optional depending upon the TSS device selection. Without the resistors, the PP3100SB/SC is recommended. However, with a resistance value of 7.5 Ohms for tip and ring, the PP3100SA is recommended. Digital signals may use a lower TSS device depending upon the total tip to ring voltage range. Selection of the TSS device, either PPxxxxSA or SB/SC is based upon the value of the tip and ring resistors. For the National Electric Code (NEC) article 800, it is recommended that at least one fuse be used in the tip or ring line for metallic surges. Fuses may be replaced with a suitable Positive Temperature Coefficient (PTC) automatic resettable current limiting device.

FIGURE 2 - UL 1459 & FCC Part 68 - Longitudinal Protection

There are two TSS devices, one located from tip-to-ground and one ring-to-ground. For standard analog signals, the PP3100SA is recommended with a typical resistor value for tip and ring of 15 Ohms. The PP3100SB/SC is recommended for resistor values of 7.5 Ohms each. The National Electric Code (NEC) article 800 requires two fuse elements when connecting to ground. Fuses or a suitable Positive Temperature Coefficient (PTC) automatic resettable current limiting device may be used. The purpose of this circuit is to limit AC power current from getting on the ground line causing any safety hazard.

FIGURE 3 - UL 1459 & FCC Part 68 - Metallic & Longitudinal Protection

Three equal TSS devices are used in this application for metallic (tip-to-ring) and longitudinal (tip-to-ground and ring-to-ground) protection. For analog signals, the PP3100SB/SC is recommended. With a resistance value of 15 Ohms for the tip and ring resistors, the PP3100SA may be used. The National Electric Code (NEC) article 800 requires two fuse elements when connecting to ground. Fuses or a suitable Positive Temperature Coefficient (PTC) automatic resettable current limiting device may be used. This circuit is recommended for protection against the Bellcore requirement: First Level Lightning Surge Tests (Telecommunications Port), document # GR-1089-CORE.

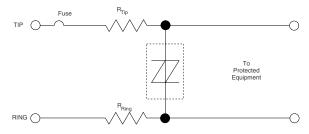


FIGURE 1 - Metallic Protection

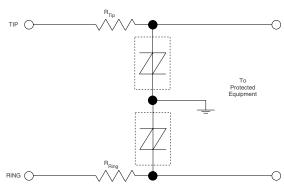
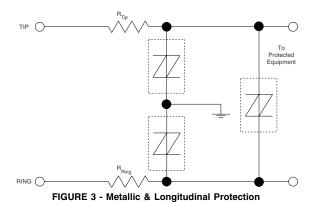



FIGURE 2 - Longitudinal Protection

05081.R10 2/07 5 www.protekdevices.com

PP0640SA PP3500SC

DO-214AA PACKAGE OUTLINE & DIMENSIONS

PACKAGE OUTLINE DO-214AA (SMB) Α В **DIMENSIONS MILLIMETERS INCHES** DIM MIN MAX MIN MAX Α 1.96 2.21 0.077 0.087 В 3.30 3.94 0.130 0.155 С С 4.06 4.57 0.160 0.180 0.098 D 2.00 2.50 0.079 Ε 0.76 0.030 1.52 0.060 F 5.21 5.59 0.205 0.220 D G 0.10 0.004 0.008 0.20 G 0.15 0.31 0.006 0.012 NOTES 1. Dimensions are exclusive of mold flash and metal burrs. TAPE & REEL ORDERING NOMENCLATURE 1. Surface mount product is taped and reeled in accordance with EIA-481. 2. Suffix-T = 13 Inch Reel - 3,000 pieces per 12mm tape, i.e., PP0640SA-T. 3. Suffix - LF = Lead-Free, Pure-Tin Plating, .e., PP0640SA-LF-T. Outline & Dimensions: Rev 0 - 4/02, 06030

COPYRIGHT © ProTek Devices 2007

SPECIFICATIONS: ProTek reserves the right to change the electrical and or mechanical characteristics described herein without notice (except JEDEC).

DESIGN CHANGES: ProTek reserves the right to discontinue product lines without notice, and that the final judgement concerning selection and specifications is the buyer's and that in furnishing engineering and technical assistance, ProTek assumes no responsibility with respect to the selection or specifications of such products.

ProTek Devices

2929 South Fair Lane, Tempe, AZ 85282 Tel: 602-431-8101 Fax: 602-431-2288 E-Mail: sales@protekdevices.com Web Site: www.protekdevices.com