## PWM SWITCHER \& LINEAR CONTROLLERIC

## FEATURES

■ LDO Controller allows the use of a low cost pass transistor for the I/O supply

- 8 pin SOIC combines switching and linear controller
- Internal Pre-regulator Eliminates Cross talk between Switching \& Linear regulators
- Automatic shut down of the linear regulator when connected to the Vcc2 Det pin
- On board MOSFET driver
- Fastest transient response of any controller method. ( 0 to 100\% Duty Cycle in 100 nS )
- $1 \%$ internal voltage reference
- Internal Under Voltage Lockout protects MOSFET during start-up


## APPUCATIONS

- Dual supply low voltage processor applications, such as: P55C ${ }^{\text {TM }}$, CYRIX M $^{\text {MTM }}$, POWER PC ${ }^{\text {TM }}$ and AMD K6 ${ }^{\text {TM }}$
- Simple 5 V to 3.3 V switcher for Pentium with AGP or Pentium IITM applications


## DESCRIPTION

The US3033 IC combines a switching controller and a linear regulator controller all in a compact 8 pin surface mount package, providing a total solution for dual supply processor applications such as an Intel P55C ${ }^{\text {™ }}$, AMD K6 ${ }^{\text {TM }}$, as well as Cyrix 6X86L ${ }^{\text {TM }}$ and the M2 ${ }^{\text {TM }}$ processors. Typically in these applications a dual supply regulator converts 5 V to 3.3 V for I/O supply and a jumper programmable supply of 1.25 V to 3.5 V for CORE supply. The linear regulator controller portion in the US3033 is a programmable controller allowing flexibility for the I/O regulator and has a minimum of 50 mA drive current capability designed to provide ample current for an external pass transistor. The IC uses an internal regulator generated from the 12 V supply to power the controller as well as the 12 V supply to drive the power MOSFET, allowing a low cost N channel MOSFET switch to be used. The IC also includes an error comparator for fast transient response, a precise voltage reference for setting the output voltage as well as a direct drive of the MOSFET for the minimum part count.

## TYPICAL APPLCATION



Typical application of US3033 in a flexible mother board designed for Intel P55 ${ }^{\text {TM }}, \mathrm{P}^{2} 4^{\text {TM }}$ AMD K5, $\mathrm{K}^{\mathrm{TM}}$ as well as Cyrix $\mathrm{M}^{\mathrm{TM}}$ and $\mathrm{M} 2^{\mathrm{TM}}$ applications.
Notes: P54C,P55C,Pentium II are trade marks of Intel Corp. K5 \& K6 are trade marks of AMD corp. Cyrix 6X86L,M1,M2 are trade marks of Cyrix Corp. Power PC is trade mark of IBM Corp.

## PACKAGE ORDER INFORMATION

| TA $\left({ }^{\circ} \mathbf{C}\right)$ | 8 PIN PLASTIC <br> SOIC (S) |
| :---: | :---: |
| 0 TO 70 | US3033CS |

## ABSOLUTE MAXMUM RATINGS

$\mathrm{V}_{12}, \mathrm{~V}_{12 \text { sw }}$ Supply Voltages ........................................................... 20 V
F.B Pin Voltages....................................................... -0.3 V to 5 V

Storage Temperature Range ................................ - $65 \mathrm{TO} 150^{\circ} \mathrm{C}$
Operating Junction Temperature ............................... 0 TO $150^{\circ} \mathrm{C}$

## PACKAGE INFORMATION

| 8 PIN PLASTIC SOIC (S) |  |
| :---: | :---: |
| top View |  |
| Dra 1 | 8 V12 |
| V12sw 2 | 7 Drv2 |
| Vib1 3 | 6 V Vb2 |
| Vhyst 4 | 5 Gnd |
| $\theta_{J A}=160^{\circ} \mathrm{C} / \mathrm{W}$ |  |

## ELECTRICAL SPEOFICATIONS

Unless otherwise specified the following specification applies over $\mathrm{V}_{12}=\mathrm{V}_{12 \mathrm{sw}}=12 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$. Low duty cycle pulse testing are used which keeps junction and case temperatures equal to the ambient temperature.

## Linear Controller Section

| PARAMETER | SYM | TEST CONDITION | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F.B Voltage Initial Accuracy | $\mathrm{V}_{\text {FB2 }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Drv2 $=\mathrm{V}_{\text {FBB2 }}, \mathrm{CL}=100 \mathrm{uF}$ | 1.237 | 1.250 | 1.262 | V |
| F.B Voltage Total Variation |  | Drv2= $\mathrm{V}_{\text {FB2 } 2, ~ C L=100 u F ~}^{\text {l }}$ | 1.225 | 1.250 | 1.275 | V |
| F.B Voltage Line Regulation |  | $10<\mathrm{V}_{12}<14 \mathrm{~V}$, Drv2 2 V $\mathrm{F}_{\text {FB2 }}$, CL= 100 uF |  | 0.2 |  | \% |
| F.B Input Bias Current | IfB2 | $\mathrm{V}_{\text {FB2 } 2}=1.25 \mathrm{~V}$ | -1 |  | +1 | uA |
| Maximum Drive Current | TDRVMAX | $\mathrm{V}_{\text {FB2 }}=1 \mathrm{~V}, \mathrm{~V}_{\text {FB } 1}=1.5 \mathrm{~V}$ |  | 50 |  | mA |
| $\bar{V}_{12}$ Supply Current | 112 | $\mathrm{V}_{\text {FB2 }}=1 \mathrm{~V}, \mathrm{~V}_{\text {FB1 }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {DRV2 }}=0$ |  | 5 |  | mA |
| Switching Controller Section |  |  |  |  |  |  |
| PARAMETER | SYM | TEST CONDITION | MIN | TYP | MAX | UNITS |
| F.B Voltage Initial Accuracy | $\mathrm{V}_{\text {FB1 }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ | 1.237 | 1.250 | 1.262 | V |
| F.B Voltage Total Variation |  |  | 1.225 | 1.250 | 1.275 | V |
| F.B Voltage Line Regulation |  |  |  | 0.2 |  | \% |
| F.B Input Bias Current | TFB1 | $\mathrm{V}_{\text {FB1 }}=1.25 \mathrm{~V}$ | -1 |  | +1 | UA |
| Min On Time |  | $V_{\text {FB } 1}$ is sq wave with 300 ns on time and 2 uS off time |  | 800 |  | nS |
| Min Off Time |  | $V_{\text {FB } 1}$ is sq wave with 300 ns off time and 2 uS on time |  | 800 |  | nS |
| Vhyst pin output-HI |  | Isource $=500 \mathrm{uA}, \mathrm{V}_{\text {Fbi }}=1.5 \mathrm{~V}$ | 11 |  |  | V |
| Vhyst pin output-LO |  | ISIIK $=500 \mathrm{uA}, \mathrm{V}_{\text {FB } 1=1 \mathrm{~V}}$ |  |  | 1 | V |
| Supply Current | I22SW | $\mathrm{V}_{\text {FB } 1}=1 \mathrm{~V}, \mathrm{~V}_{\text {FB2 } 2}=1.5 \mathrm{~V}$ |  | 10 |  | mA |
| Maximum Duty Cycle | Dmax | $\mathrm{V}_{\text {FB1 }}=1 \mathrm{~V}$ |  |  | 100 | \% |
| Minimum Duty Cycle | Dmin | $\mathrm{V}_{\text {FB1 }}=1.5 \mathrm{~V}$ | 0 |  |  | \% |
| Gate Drive Rise/Fall Time | $V_{\text {gate }}$ | Load=IRL3303 |  | 70 |  | nS |

## PIN DESCRIPTIONS

| PIN \# | PIN SYMBOL | PIN DESCRIPTION |
| :---: | :---: | :--- |
| 3 | $V_{\text {FB1 }}$ | A resistor divider from this pin to the output of the switching regulator and ground sets the <br> Core supply voltage. |
| 6 | $V_{\text {FB2 }}$ | The feedback pin of the linear regulator. A resistor divider from this pin to the output of the <br> linear regulator and ground sets the I/O supply voltage. |
| 7 | Drv2 | The drive pin of the linear regulator. This pin controls the base of a transistor or the gate <br> of a MOSFET acting as the series pass element for the linear regulator. |
| 5 | Gnd | This pin is connected to the IC substrate and must be connected to the lowest potential <br> in the system. |
| 1 | Drv1 | The PWM output of the switching controller. This pin is a totem pole drive that is con- <br> nected to the gate of the power MOSFET. A resistor may be placed from this pin to the <br> gate in order to reduce switching noise. |
| 4 | $V_{\text {Vryst }}$ | A resistor and a 10pF capacitor is connected from this pin to the VFB1 pin to set the <br> output ripple voltage for the switching regulator. |
| 2 | $V_{12 s w}$ | This pin supplies the voltage to the PWM drive and hysterises circuitry and it is con- <br> nected to the 12V supply. A 1 uF, high frequency capacitor must be connected from this <br> pin to ground to provide the peak current for charging and discharging of the MOSFET. |
| 8 | $V_{12}$ | This pin provides the biasing for the chip and drive for the linear regulator controller. It <br> isconnected to 12V supply. A 10 ohm resistor in series from this pin to the 12V supply <br> and a 1uF, high frequency capacitor connected from this pin to Gnd is required to filter <br> the switching noise of the switching regulator. |

## BLOCK DIAGRAM



Figure 1 - Simplified block diagram of the US3033

## TYPICAL APPLCATION

Pentium Dual Supply Application


Figure2- Typical application of US3033 in a flexible motherboard with the 4 bit VID output voltage selection. This circuit uses a single jumper that programs the output voltage in 16 steps with 0.1 V steps from 2 V to 3.5 V , designed for Intel $\mathrm{P} 55^{\mathrm{TM}}, \mathrm{P} 54^{\mathrm{TM}}$, AMD K5 \& $K 6^{T M}$ as well as Cyrix $\mathrm{M}^{\mathrm{TM}}$ and $\mathrm{M}^{\mathrm{TM}}$ applications. The Vcc2Det pin automatically shuts down the I/O regulator when a single plane processor is dropped in the socket.

| JP1 | JP1 | JP1 | JP1 | Output |
| :--- | :--- | :--- | :--- | :--- |
| $1-2$ | $3-4$ | $5-6$ | $7-8$ | Voltage |
| 0 | 0 | 0 | 0 | 3.5 |
| 0 | 0 | 0 | 1 | 3.4 |
| 0 | 0 | 1 | 0 | 3.3 |
| 0 | 0 | 1 | 1 | 3.2 |
| 0 | 1 | 0 | 0 | 3.1 |
| 0 | 1 | 0 | 1 | 3.0 |
| 0 | 1 | 1 | 0 | 2.9 |
| 0 | 1 | 1 | 1 | 2.8 |
| 1 | 0 | 0 | 0 | 2.7 |
| 1 | 0 | 0 | 1 | 2.6 |
| 1 | 0 | 1 | 0 | 2.5 |
| 1 | 0 | 1 | 1 | 2.4 |
| 1 | 1 | 0 | 0 | 2.3 |
| 1 | 1 | 0 | 1 | 2.2 |
| 1 | 1 | 1 | 0 | 2.1 |

## Pentium Dual Supply Application Parts List

| Ref Desig | Description | Qty | Part \# | Manufacturer |
| :---: | :---: | :---: | :---: | :---: |
| U1 | LDO/Switcher IC | 1 | US3033CS ( 8 pin SOIC) | Unisem |
| Q1 | MOSFET | 1 | MTP3055 (TO220) | Motorola |
| Q2 | MOSFET | 1 | IRL3303 (TO220) IRL3103S (TO263) (note 1) | International Rectifier |
| D2 | Diode, GP | 1 | 1N4148 |  |
| D1 | Schottky Diode | 1 | MBR1045CT (TO220) MBRB1545CT (TO263) (note1) | Motorola |
| L2 | Inductor | 1 | Core:T50-18,L=4 uH Turns: 10T, 18 AWG | Micro Metal (core) |
| L1 | Inductor | 1 | $\mathrm{L}=2 \mathrm{uH}$ |  |
| R1 | Resistor | 1 | 22 ohm,5\%, SMT 1206 size |  |
| R2 | Resistor | 1 | 10 ohm, 5\%, SMT 1206 size |  |
| R3 | Resistor | 1 | 324 kohm, 1\%, SMT 0805 size |  |
| R4A * | Resistor | 1 | 806 ohm,1\%, SMT 0805 size |  |
| R4B * | Resistor | 1 | 90.9 kohm, 1\%, SMT 0805 size |  |
| R5A | Resistor | 1 | 1.24 kohm,1\%, SMT 0805 size |  |
| R5B | Resistor | 1 | 2.49 kohm, 1\%, SMT 0805 size |  |
| R5C | Resistor | 1 | 4.99 kohm, 1\%, SMT 0805 size |  |
| R5D | Resistor | 1 | 10 kohm,1\%, SMT 0805 size |  |
| R5E | Resistor | 1 | 1.30 kohm,1\%, SMT 0805 size |  |
| R6 | Resistor | 1 | 2k ohm, 1\%, SMT 0805 size |  |
| R7 | Resistor | 1 | 1.21k ohm,1\%, SMT 0805 size |  |
| R8 | Resistor | 1 | 1 kohm, 5\%, SMT 0805 size |  |
| R9 | Resistor | 1 | 10 ohm, $5 \%$, SMT 0805 size |  |
| R10 | Resistor | 1 | 1k ohm, $5 \%$, SMT 0805 size |  |
| R11 | Resistor | 1 | 2.4 k ohm, $5 \%$, SMT 0805 size |  |
| R13 | Resistor | 1 | 7.5k ohm,5\%, SMT 0805 size |  |
| C1 | Capacitor | 1 | 6MV1500GX, 1500uF,6.3V, Elect |  |
| C2 | Capacitor | 1 | 6MV1500GX, 1500uF,6.3V, Elect | Sanyo |
| C3 | Capacitor | 1 | 1 uF,Ceramic, SMT 0805 size |  |
| C4 | Capacitor | 1 | 470 pF,Ceramic, SMT 0805 size | Sanyo |
| C5 | Capacitor | 1 | 10 pF, Ceramic, SMT 0805 size | Sanyo |
| C6 | Capacitor | 1 | 6MV1500GX, 1500uF,6.3V, Elect | Sanyo |
| C7 | Capacitor | 4 | 6MV1500GX, 1500uF,6.3V, Elect | Sanyo |
| C8 | Capacitor | 1 | 1 uF,Ceramic, SMT 0805 size |  |
| C9 | Capacitor | 1 | 470pF ,Ceramic, SMT 0805 size |  |
| HS1 | Heat Sink | 1 | For MOSFET, 577002 | Aavid |
| HS2 | Heat Sink | 1 | For Schottky Diode , 577002 | Aavid |
| HS3 | Heat Sink | 1 | For Q1, 507222  <br> 576602 $(1 / \mathrm{I}$ curren<5A) current<3.5A) | Aavid |

* R4 is a parallel combination of R4A and R4B.

Note 1: For the applications where it is desirable to eliminate the heat sink, the IRL3103S for Q2 and MBR1545CT for D2 in TO263 packages with minimum of 1 " square copper pad can be used.

## TYPICAL APPLCATION

## 5 V to 3.3V for Pentium Application with AGP or Pentium II Application without ATX power supply Dual mode Operation between Switching or Linear mode.

| Mode of Operation | L1 | L2 | D1 | C4 | C5 | R1A | R1B | R2 | R3 | R4 | R5 | R6 | R7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switching | V | V | V | V | V | O | V | V | V | V | V | V | O |
| Linear | S | S | O | O | O | V | O | O | O | V | O | V | V |

$\mathrm{V}=$ See parts list for value $\mathrm{S}=$ Short $\mathrm{O}=$ Open

| Ref Desig | Description | Qty | Part \# | Manufacturer |
| :---: | :---: | :---: | :---: | :---: |
| U1 | LDO/Switcher IC | 1 | US3033CS ( 8 pin SOIC) | Unisem |
| Q2 | MOSFET | 1 | IRL3303 (TO220) IRL3103S (TO263) (note 1) | International Rectifier |
| D1 | Schottky Diode | 1 | MBR1045CT (TO220) MBRB1545CT (TO263) (note1) | Motorola |
| L2 | Inductor | 1 | Core:T50-18, L=4 uH Turns: 10T, 18 AWG | Micro Metal (core) |
| L1 | Inductor | 1 | $\mathrm{L}=2 \mathrm{uH}$ |  |
| R1A | Resistor | 1 | 2.4k ohm,5\%, SMT 1206 size |  |
| R1B | Resistor | 1 | 22 ohm, 5\%, SMT 1206 size |  |
| R2 | Resistor | 1 | 10 ohm, 5\%, SMT 1206 size |  |
| R3 | Resistor | 1 | 249 kohm, 1\%, SMT 0805 size |  |
| R4 | Resistor | 1 | 1 kohm,1\%, SMT 0805 size |  |
| R5 | Resistor | 1 | 576 ohm, 1\%, SMT 0805 size |  |
| R6 | Resistor | 1 | 180 ohm, 1\%, SMT 0805 size |  |
| R7 | Resistor | 1 | 100 ohm, 1\%, SMT 0805 size |  |
| R9 | Resistor | 1 | 10 ohm, 5\%, SMT 1206 size |  |
| R10 | Resistor | 1 | 1k ohm, 5\%, SMT 1206 size |  |
| R13 | Resistor | 1 | 7.5k ohm, 5\%, SMT 1206 size |  |
| C1,2 | Capacitor | 2 | 6MV1500GX, 1500uF,6.3V, Elect | Sanyo |
| C3 | Capacitor | 1 | 1 uF,Ceramic, SMT 0805 size |  |
| C4 | Capacitor | 1 | 470 pF,Ceramic, SMT 0805 size | Sanyo |
| C5 | Capacitor | 1 | 10 pF, Ceramic, SMT 0805 size | Sanyo |
| C7 | Capacitor | 1 | 6MV1500GX, 1500uF,6.3V, Elect | Sanyo |
| C8 | Capacitor | 1 | 1 uF,Ceramic, SMT 0805 size |  |
| C9 | Capacitor | 1 | 470pF,Ceramic, SMT 0805 size |  |
| HS1 | Heat Sink | 1 | For MOSFET in Switching mode , 577002 <br> For MOSFET in Linear mode : <br> 507222 (3.3V current<5A), <br> 576602 (3.3V current<3.5A) | Aavid |
| HS2 | Heat Sink | 1 | For Schottky Diode , 577002 | Aavid |

## TYPICAL APPLCATON

5 V to 3.3V for Pentium Application with AGP or Pentium II Application without ATX power supply Switching mode Operation.


Figure4- The circuit in figure 4 is the application of the US3033 in a switching mode only. This circuit can be used to generate a low cost 5 V to 3.3 V for either Pentium application with AGP socket or in Pentium II applications where it is desirable to generate an accurate on board 3.3 V supply.

| Ref Desig | Description | Qty | Part \# | Manufacturer |
| :---: | :--- | :---: | :--- | :---: |
| U1 | LDO/Switcher IC | 1 | US3033CS (8 pin SOIC) | Unisem |
| Q2 | MOSFET | 1 | IRL3303 (TO220) <br> IRL3103S (TO263) (note 1) |  |
| D1 | Schottky Diode | 1 | MBR1045CT (TO220) <br> MBRB1545CT (TO263) (note1) <br> Rectifier |  |
| L2 | Inductor | 1 | Core:T50-18,L=4 uH <br> Turns: 10T, 18 AWG | Motorola |
| L1 | Inductor | 1 | L=2 uH | Micro Metal <br> (core) |
| R1 | Resistor | 1 | 22 ohm,5\%, SMT 1206 size |  |
| R9 | Resistor | 1 | 10 ohm,5\%, SMT 0805 size |  |
| R2 | Resistor | 1 | 10 ohm, 5\%, SMT 1206 size |  |
| R3 | Resistor | 1 | 249 kohm,1\%, SMT 0805 size |  |
| R4 | Resistor | 1 | 1 kohm,1\%, SMT 0805 size |  |
| R5 | Resistor | 1 | 576 ohm,1\%, SMT 0805 size | Sanyo |
| C1,2 | Capacitor | 2 | 6 6V1500GX, 1500uF,6.3V, Elect | Sanyo |
| C3 | Capacitor | 1 | 1 uF,Ceramic, SMT 0805 size | Sanyo |
| C4 | Capacitor | 1 | 470 pF,Ceramic, SMT 0805 size | Sanyo |
| C5 | Capacitor | 1 | 10 pF,Ceramic, SMT 0805 size |  |
| C7 | Capacitor | 1 | $6 M V 1500 G X, 1500$ uF,6.3V, Elect | Aavid |
| C8 | Capacitor | 1 | 1 uF,Ceramic, SMT 0805 size | Aavid |
| HS1 | Heat Sink | 1 | For MOSFET, 577002 |  |
| HS2 | Heat Sink | 1 | For Schottky Diode, 577002 |  |

Note 1: For the applications where it is desirable to eliminate the heat sink, the IRL3103S for Q2 and MBR1545CT for D2 in TO263 packages with minimum of $1^{\prime \prime}$ square copper pad can be used.

## APPLCATION INFORMATION

## Introduction

The US3033 device is an application specific product designed to provide an on board dual supply for the new generation of microprocessors requiring separate Core and I/O supplies. One of the processors fitting this requirement is the new Intel P55CTM multimedia microprocessor. Intel specifies a Core voltage of 2.8 V nominal ( $\pm 100 \mathrm{mV}$ max) with maximum Core supply current of 6 A while the I/O supply is set for 3.3 V with a maximum $\mathrm{I} / \mathrm{O}$ current of 0.65 A . However in most applications the I/ O regulator also provides the voltage for other IC functions such as the chip set ,Cache,....etc. Typically a low cost solution such as a Low Dropout Linear Regulator (LDO) is selected to provide the I/O supply with the maximum designed current of 3 A , keeping the power dissipation and the heat sink to a reasonable size. The Core supply regulator however if also selected to be a linear regulator, will be dissipating a maximum of 12.6 W ((5V-2.8V)X5.7A) of power, which requires a substantial amount of heat sinking and perhaps forced air cooling in order to keep it operational. Some manufacturers suggest using two regulators to current share and therefore distribute the power dissipation equally between the regulators. The problem is that, in order to equally current share you need to sense both currents and force the slave regulator to match the master regulator. This can be done, but at the cost of the circuit complexity and much higher system cost and the total power dissipation is still the same. In fact, if the task is to design a flexible motherboard to accommodate the Cyrix 6X86L or their future MMX processors as well, then the power dissipation could easily reach 20 W or more. At this power dissipation level the choice for a switching regulator approach becomes evident. However the main reason that designers have always shied away from the switching regulators is their higher price tag and more complex circuit design that is associated with this kind of technique.
The US3033 device is designed to take advantage of the high efficiency of the switching regulator technique for the Core supply while maintaining the low cost LDO regulator for the I/O supply by offering both control functions in a single 8 pin surface mount package. In fact as the typical application circuit shows, one can design a complete flexible motherboard using the US3033 and a few external components yielding a very low component count switching regulator and with an addition of a low cost pass transis-
tor for the I/O supply provide a complete dual supply power soloution.

## LDO Section

The output voltage of the LDO regulator is externally programmable via 2 external resistors from 1.25 V to 5 V . The internal voltage reference of the The LDO regulator is set to 1.25 V and the output of the regulator can be programmed using the following formula:
Vout=(1+R1/R2)xVref
Where Vref=1.25V Typical
R1=Resistor connected from Vout to the Vfb2 pin of US3033
R2=Resistor connected from Vfb2 pin to GND.
The US3033 requires the use of an output capacitor as part of the frequency compensation in order to be stable. Typical designs for the microprocessor applications use standard electrolytic capacitors with typical ESR in the range of 50 to $100 \mathrm{~m} \Omega$ and an output capacitance of 500 to 1000 uF. Fortunately as the capacitance increases, the ESR decreases resulting in a fixed RC time constant. The US3033 takes advantage of this phenomena in making the overall regulator loop stable. For most applications a minimum of 100 uF aluminum electrolytic capacitor such as Sanyo, MVGX series ,Panasonic FA series or Nichicon PL series insures both stability and good transient response.
An external filtering is suggested as shown in the application circuit that reduces the switching ripple that might show in the output of the LDO regulator.

## Switching Controller Operation

The operation of the switching controller is as follows : after the power is applied, the output drive, "Drv1" goes to $100 \%$ duty cycle and the the current in the inductor charges the output capacitor causing the output voltage to increase. When output reaches a pre-programmed set point the feedback pin "Fb1" exceeds 1.25 V causing the output drive to switch low and the "Vhyst" pin to switch high which jumps the feedback pin higher than 1.25 V resulting in a fixed output ripple which is given by the following equation :
$\Delta \mathrm{Vo}=(\mathrm{Rt} / \mathrm{Rh}) \times 11$
Where:
$\mathrm{Rt}=$ Top resistor of the output divider, resistor connected from Vout to the Vfb1 pin of US3033
$\mathrm{Rh}=$ Bottom resistor of the divider, resistor connected from Vfb1 pin to Vhyst pin.
For example, if $\mathrm{Rt}=1 \mathrm{k}$ and $\mathrm{Rh}=422 \mathrm{k}$, then the output ripple is :
$\Delta \mathrm{Vo}=(1 / 422) \times 11=26 \mathrm{mV}$

The advantage of fixed output ripple is that when the output voltage changes from 2 V to 3.5 V , the ripple voltage remains the same which is important in meeting the Intel maximum tolerance specification.

## Switcher Output Voltage Setting

The output voltage of the switcher can be set using the following equations.
Assuming , $\mathrm{Vo}=3.38 \mathrm{~V}$ and the selected output ripple is $\approx 1.3 \%(44 \mathrm{mV})$ of the output voltage, a set of equations are derived that selects the resistor divider and the hysterises resistor.
Assuming, Rt=1k $\Omega$, $1 \%$
$\mathrm{Rh}=\left(11^{*} \mathrm{Rt}\right) / \Delta \mathrm{Vo}$
Where:
$\mathrm{Rt}=$ Top resistor of the resistor divider
Rh=Hysterises resistor connected between pins 3 and 4 of the US3033
$\Delta \mathrm{Vo}=$ Selected output ripple (typically $1 \%$ to $2 \%$ of output voltage)
Assuming, $\Delta \mathrm{Vo}=44 \mathrm{mV}$
$\mathrm{Rh}=(11 * 1000) / 0.044=250 \mathrm{k} \Omega$
Select Rh=249 k $\Omega$, 1\%
The bottom resistor of the divider is then calculated using the following equations:
Rb=Rt/X
Where:
$\mathrm{Rb}=\mathrm{Bottom}$ resistor of the divider
$\mathrm{X}=[(\mathrm{Vo}+(\Delta \mathrm{Vo} / 2)) / \mathrm{Vref}]-1$
Vref=1.25 V typ.
$X=[(3.38+(0.044 / 2)) / 1.25]-1=1.72$
$\mathrm{Rb}=1000 / 1.72=580 \Omega$
Select Rb=576 $\Omega$, 1\%

## Frequency Calculation

The US3033 frequency of operation is calculated using the following formula:
$\mathrm{Fs}=\left[\left(\mathrm{Vo}{ }^{*}(1-\mathrm{D})^{*} \mathrm{ESR}\right)\right]\left(\mathrm{L}^{*} \Delta \mathrm{Vo}\right)(\mathrm{MHz})$
Where:
Vo=Output voltage (V)
D=Duty cycle
ESR=Output capacitor ESR (V)
L=Output inductance (uH)
$\Delta \mathrm{Vo}$ =Output ripple voltage ( V )
For our example:
$\mathrm{D} \approx(\mathrm{Vo}+\mathrm{Vf}) / \mathrm{Vin}$
Where, $\mathrm{Vf}=$ Forward voltage drop of the Schotky diode
$\mathrm{D}=(3.38+0.5) / 5=0.78$
The ESR $=18 \mathrm{~m} \Omega$ for 2 of the Sanyo 1500uF, 6MV1500GX caps. If $\mathrm{L}=3.5 \mathrm{uH}$ then, Fs is calculated as follows:
Fs $=\left[\left(3.38^{*}(1-0.78)^{*} 0.018\right)\right]\left(3.5^{*} 0.044\right)=0.087 \mathrm{Mhz}$
$=87 \mathrm{kHz}$

