TA8132AN

**TA2012N** 

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

# TA8132AN,TA8132AF,TA2012N,TA2012F

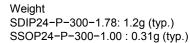
3V AM / FM IF + MPX (For Digital Tuning System)

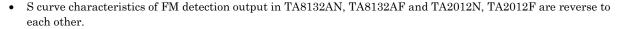
TA8132AN, TA8132AF and TA2012N, TA2012F are the AM / FM IF+ST DET system ICs, which are designed for DTS radios. These are included many functions and these can be used for digital tuning system with IF counter.

#### **Features**

- Built-in AM / FM IF and FM stereo PLL multiplex decoder.
- Suitable for combination with digital tuning system which is included IF counter.
  - One terminal type AM / FM IF count output (auto stop signal) for IF counter of digital tuning system.

FM:  $10.7 \mathrm{MHz}$  or  $1.3375 \mathrm{MHz}$  (1 / 8 dividing) changeable by external switch


AM: 450kHz


 $\bigcirc\;$  Built–in mute circuit for IF count output.

It is controlled by the IF request signal from digital tuning system,

Pin(8) level: High  $\rightarrow$  come out Low  $\rightarrow$  non output

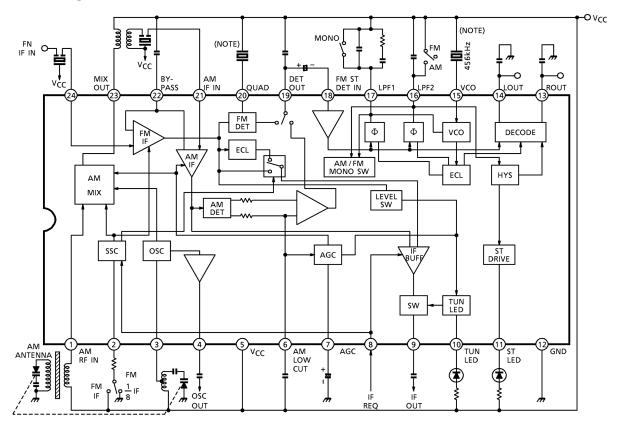
- O Adjustable for IF count output sensitivity by external resistance of pin(2).
- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector circuit and FM ST DET VCO circuit.





 $TA8132AN,\,TA8132AF\colon Reverse\ characteristic.$ 

TA2012N, TA2012F: Normal characteristic.


- Built-in one terminal type AM low cut circuit.
- TA2053F is reverse pin type of TA2012F.
- Operating supply voltage range (Ta = 25°C)
   V<sub>CC (opr.)</sub> = 1.8~8.0V

SDIP24-P-300-1.78
TA8132AF
TA2012F

SSOP24-P-300-1.00

2002-10-30

# **Block Diagram**



(Note)

We recommend

Ceramic resonator: CSB456F18

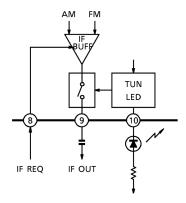
Ceramic discriminator: CDA10.7MG18 (MURATA MFG CO., LTD)



# **Explanation Of Terminals**

| Pin | Item                                                                           | Internal Circuit                               | DC Vol | tage (V)<br>Signal) |
|-----|--------------------------------------------------------------------------------|------------------------------------------------|--------|---------------------|
| No. | 1.6                                                                            |                                                | AM     | FM                  |
| 1   | AM RF IN                                                                       | VCC S                                          | 3.0    | 3.0                 |
| 2   | IF count output sensitivity adjust terminal     FM IF divider control terminal | Vcc (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | -      | _                   |
| 3   | AM OSC                                                                         | VCC S BUFF AMP ALC                             | 3.0    | 3.0                 |
| 4   | AM OSC OUT                                                                     | VCC S AM OSC 4 GND (2)                         | 2.7    | 3.0                 |
| 5   | Vcc                                                                            | _                                              | 3.0    | 3.0                 |
| 6   | AM LOW CUT                                                                     | VCC (5) (22kΩ) (6) (6)                         | 2.3    | 2.3                 |

| Pin      | Item                 | Internal Circuit                             | DC Voltage (V)<br>(at no Signal) |      |  |
|----------|----------------------|----------------------------------------------|----------------------------------|------|--|
| No.      |                      |                                              | AM                               | FM   |  |
| 7        | AGC                  | VCC (5)  GND (12)  SEARCH MODE: HIGH         | 0.25                             | 0.35 |  |
| 8        | IF OUT SW            | 8—w-1<br>12                                  | -                                | _    |  |
| 9        | IF OUT               | 00 D D D D D D D D D D D D D D D D D D       | 3.0                              | 3.0  |  |
| 10       | TUN LED (tuning LED) | VCC S                                        | -                                | _    |  |
| 11       | ST LED (stereo LED)  | 19kHz 11 11 11 11 11 11 11 11 11 11 11 11 11 | -                                | _    |  |
| 12       | GND                  | _                                            | 0                                | 0    |  |
| 13<br>14 | R-OUT<br>L-OUT       | Vcc (5)                                      | 1.0                              | 1.0  |  |


| Pin | Item                                                                                                                                                       | Internal Circuit                  | DC Vol | tage (V)<br>Signal)          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|------------------------------|
| No. | nem                                                                                                                                                        | memai oreut                       | AM     | FM                           |
| 15  | vco                                                                                                                                                        | VCC (S)                           | 2.5    | 2.5<br>(VCO<br>stop<br>mode) |
| 16  | LPF2  • LPF terminal for synchronous detector  • Bias terminal for AM / FM switch circuit  V <sub>16</sub> = V <sub>CC</sub> →AM V <sub>16</sub> = open→FM | GND 12                            | 3.0    | 2.2                          |
| 17  | LPF1  • LPF Terminal for phase detector  • VCO stop terminal  V <sub>17</sub> = V <sub>CC</sub> →VCO stop                                                  | GND 12                            | 2.7    | 2.2                          |
| 18  | FM ST DET IN                                                                                                                                               | (B) (G) (12)                      | 0.7    | 0.7                          |
| 19  | DET OUT                                                                                                                                                    | V <sub>CC</sub> S  AM  FM  GND 12 | 1.1    | 1.1                          |

| Pin | Item                                | Internal Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC Volt | tage (V)<br>Signal) |
|-----|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|
| No. | 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM      | FM                  |
| 20  | QUAD (FM QUAD. Detector)            | V <sub>CC</sub> (5) (29) (19) (19) (19) (19) (19) (19) (19) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4     | 2.1                 |
| 21  | AM IF IN                            | Vcc (5) C2 (2) m ( | 3.0     | 3.0                 |
| 22  | BY-PASS<br>By-pass for AM/FM IF AMP | GND 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3     | 2.8                 |
| 23  | AM MIX OUT                          | V <sub>CC</sub> (S)   MIX   MIX   GND (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0     | 3.0                 |
| 24  | FM IF IN                            | VCC S  BY-PASS 22  GND 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0     | 3.0                 |



## **Application Note**

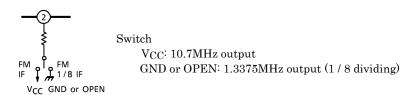
1. How to control the IF count output signal (pin(9) output)



|                |   | TUN LED    |            |  |  |
|----------------|---|------------|------------|--|--|
|                |   | ON         | OFF        |  |  |
| V <sub>8</sub> | Н | Come out   | Non output |  |  |
| V8             | L | Non output | Non output |  |  |

• Whether or not there is the IF count output signal (pin(9) output) is determined by the and of the pin(8) control voltage:  $V_8$  and tuning LED on / off switching.

In the condition of


V8: High (active high, VTH = 0.8V (typ.))

TUN LED: ON  $(V_{in} \ge V_L + 2dB\mu V \text{ EMF (typ.)})$ 

the IF count output signal comes out from the pin(9).

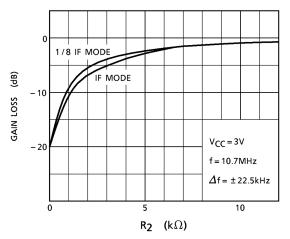
In the case of the tuning LED function is not needed, it doesn't matter the pin(10) is opened.

- The output impedance of pin(9) is  $1.5k\Omega$  (typ.) (cf.P.4) It is possible to reduce the IF count output signal level to add the resistance between the pin(9) and the V<sub>CC</sub> line
- The signal waveform is the rectangular wave, and the level is  $500 mV_{p-p}$  (typ.)
- 2. How to control the divider of FM IF



- 3. How to adjust the IF count output sensitivity
  - The IF count output sensitivity (search sensitivity)

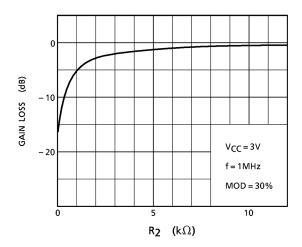
    Can be adjusted by varying the IF AMP gain for FM and varying the MIXER gain for AM.


    This setting is made by changing the value of external resistance R<sub>2</sub> which is connected to pin(2).



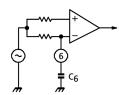
• However, this is only possible at the auto-tuning mode. (external voltage supplied to pin(8) is at high level.) The original again returns while receiving a broadcast station (supplied voltage to pin(8) is at low level.)

• The gain loss of FM IF AMP


|      |                         | R     | 2           |
|------|-------------------------|-------|-------------|
|      |                         | Ω0    | 10KΩ (Note) |
| ge   | IF<br>(10.7MHz)         | -20dB | -1dB        |
| Mode | 1 / 8 IF<br>(1.3375MHz) | -20dB | -1dB        |



(Note)


- In the condition of the 1 / 8 IF mode, it is possible to set up R<sub>2</sub> = ∞ (OPEN).
- In the condition of IF mode, it is necessary to set up the value of  $R_2$  under  $10k\Omega$ . When the  $R_2$  is over  $10k\Omega$  it is feared that the mode is change to the 1 / 8 IF mode.
- The gain loss of AM MIXER

|   | R     | 2    |
|---|-------|------|
|   | 0Ω    | 10ΚΩ |
| ĺ | -16dB | -1dB |



#### 4. AM low-cut circuit

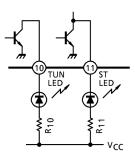
• The AM low-cut action is carried out by the bypass of the high frequency component of the positive-feedback signal at the AF AMP stage. The external capacitor: C6 by-passes this component.



• The cut–off frequency fL is determine by the internal resistance  $22k\Omega$  (typ.) and the external capacitor C6 as following;

$$f_L = \frac{1}{2 \times \pi \times 22 \times 10^3 \times C_6} (Hz)$$

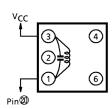
• In the case of the AM low–cut function is not needed, set up the value of  $C_6$  over  $0.47\mu F$ . In the condition of  $C_6 \ge 0.47\mu F$ , the frequency characteristic has flat response at the low frequency.


8

#### 5. AM local oscillator buffer output

- The output impedance of AM local oscillator buffer output pin (pin(4)) is 750Ω (typ.) (cf.P.3)
- It is possible to reduce the output level to add the resistance between the pin(4) and  $V_{CC}$  line. The signal waveform is the rectangular wave, and the level is  $500 \text{mV}_{p-p}$  (fosc = 1.45MHz, typ.)
- The higher local oscillation frequency (fOSC) to be, the lower buff output level to be owing to the load capacity. So, in the case that it is connected to other circuits, take care of the input capacity of these circuits and stray capacity of wire.

#### 6. Tuning LED driver and stereo LED driver


- The tuning LED driver and stereo LED driver don't have current limit resistance shown in the right figure. So, it is necessary to add the current limit resistance:  $R_{10},\,R_{11}$ .
- Set up the values of R<sub>10</sub>, R<sub>11</sub> to keep the drive currents ID10, ID11 under 10mA.



#### 7.FM detection circuit

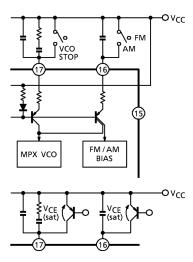
For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows. In this case, please take care that  $V_{in}$  (lim.) falls a little.





| ſ | Test      | Co   | o <sub>o</sub> | Turns |     |     |     | Wire     | REF                                                     |
|---|-----------|------|----------------|-------|-----|-----|-----|----------|---------------------------------------------------------|
|   | Frequency | (pF) | <b>Q</b> 0     | 1–2   | 2–3 | 1–3 | 4–6 | (mmφ)    | IXLI                                                    |
|   | 10.7MHz   | 100  | 100            |       |     | 12  | _   | 0.12 UEW | SUMIDA ELECTRIC CO., LTD<br>2153-4095-189 or equivalent |

#### 8. FM / AM switch and forced monaural switch


FM / AM switch over and stere / forced monaural switch over are done by internal PNP transistors ON / OFF which are connected to pin(16) and pin(17) respectively.

The threshold voltages of these PNP transistors are  $V_{th}$  =  $V_{CC}$ , and for switching, we recommend to use mechanical switch.

(Direct short to VCC line.)

In the case of the electrical switch over by transistor, set up  $V_{\rm CE}$  (saturation voltage between collector and emitter) 50mV or less, otherwise there are some cases that it does not become the AM mode and force monaural mode.

When these external switches are ON, the currents which flow into pin(16) and pin(17) are  $100\mu A$  and  $20\mu A$  respectively. (Typical value at VCC = 3V)



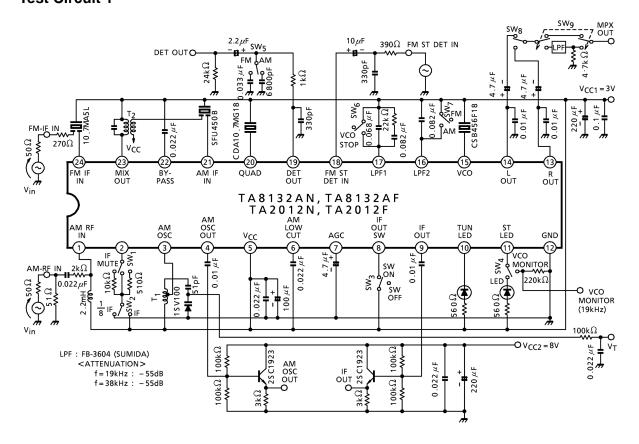
## Maximum Ratings (Ta = 25°C)

| Characte            | eristic  | Symbol              | Rating  | Unit  |
|---------------------|----------|---------------------|---------|-------|
| Supply voltage      |          | V <sub>CC</sub>     | 8       | ٧     |
| LED current         |          | I <sub>LED</sub> 10 |         | mA    |
| LED voltage         |          | $V_{LED}$           | 8       | V     |
| Power dissipation   | TA8132AN | PD (Note)           | 1200    | mW    |
| i owei dissipation  | TA8132AF | TD (Note)           | 400     | 11100 |
| Operating Temperatu | ire      | T <sub>opr</sub>    | -25~75  | °C    |
| Storage temperature |          | T <sub>stg</sub>    | -55~150 | °C    |

(Note): Derated above 25°C in the proportion of 9.6mW / °C for TA8132AN, TA2012N and of 3.2mW / °C for TA8132AF, TA2012F.



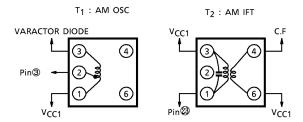
Electrical characteristics Unless Otherwise Specified, Ta = 25°C,  $V_{CC1}$  = 3V,  $SW_1 \rightarrow 10k\Omega$ ,  $SW_3 \rightarrow OFF$  FM IF: f = 10.7MHz,  $\Delta f$  =  $\pm 22.5kHz$ ,  $f_m$  = 1kHz AM: f = 1MHz, MOD = 30%,  $f_m$  = 1kHz


| MPX: | $f_{m}$ | = | 1k | ίHz |
|------|---------|---|----|-----|

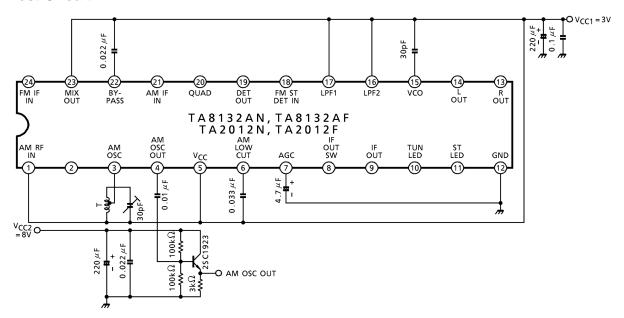
| Characteristic |                           | Symbol               | Test<br>Cir–<br>cuit       | Test Condition               | Min.                                                                                                             | Тур.   | Max.   | Unit   |                   |
|----------------|---------------------------|----------------------|----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|--------|--------|--------|-------------------|
| Supply current |                           | I <sub>CC</sub> (FM) | 1                          | FM mode, V <sub>in</sub> = 0 | _                                                                                                                | 11.0   | 14.0   | mA     |                   |
|                |                           | I <sub>CC</sub> (AM) | 1                          | AM mode, V <sub>in</sub> = 0 |                                                                                                                  | 10.5   | 13.5   | IIIA   |                   |
|                | Input limiting voltage    | I                    | V <sub>in (lim.)</sub>     | 1                            | -3dB limiting point                                                                                              | 41     | 46     | 51     | dBµV<br>EMF       |
|                | Recovered of voltage      | output               | V <sub>OD</sub>            | 1                            | V <sub>in</sub> = 80dBμV EMF                                                                                     | 50     | 75     | 100    | mV <sub>rms</sub> |
|                | Signal to noi ratio       | se                   | S/N                        | 1                            | V <sub>in</sub> = 80dBμV EMF                                                                                     | _      | 65     | _      | dB                |
|                | Total harmonic distortion |                      | THD                        | 1                            | V <sub>in</sub> = 80dBμV EMF                                                                                     | _      | 0.2    | _      | %                 |
|                | AM rejection ratio        |                      | AMR                        | 1                            | V <sub>in</sub> = 80dBµV EMF                                                                                     | _      | 38     | _      | dB                |
|                | LED on sensitivity        |                      | $V_{L}$                    | 1                            | I <sub>L</sub> = 1mA                                                                                             | 48     | 53     | 58     | dBµV<br>EMF       |
| FM             | IF count output frequency | IF                   | f <sub>IF</sub> (FM)       | 1                            | $V_{in}$ = 80dB $\mu$ V EMF,<br>SW $_2$ $\rightarrow$ V <sub>CC</sub> , SW $_3$ $\rightarrow$ ON                 | _      | 10.7   | _      | MHz               |
| IF             |                           | 1 / 8 IF             | f <sub>1 / 8 IF</sub> (FM) | 1                            | $V_{in}$ = 80dB $\mu$ V EMF,<br>SW $_2$ $\rightarrow$ GND, SW $_3$ $\rightarrow$ ON                              | 1.3374 | 1.3375 | 1.3376 | IVIFIZ            |
|                | IF count output           | IF                   | V <sub>IF</sub> (FM)       | 1                            | $V_{in}$ = 61dB $\mu$ V EMF,<br>SW <sub>2</sub> $\rightarrow$ V <sub>CC</sub> , SW <sub>3</sub> $\rightarrow$ ON | 350    | 500    | _      | ,,                |
|                | voltage                   | 1 / 8 IF             | V <sub>1 / 8 IF</sub> (FM) | 1                            | $V_{in}$ = 61dB $\mu$ V EMF,<br>SW $_2$ $\rightarrow$ GND, SW $_3$ $\rightarrow$ ON                              | 350    | 500    | _      | mV <sub>p-p</sub> |
|                |                           |                      |                            |                              | $SW_1 \rightarrow 0$ , $SW_2 \rightarrow GND$ , $SW_3 \rightarrow ON$                                            | _      | 76     | _      |                   |
|                | IF count output           |                      | IE                         | _                            | $SW_1 \rightarrow 510\Omega$ , $SW_2 \rightarrow GND$ , $SW_3 \rightarrow ON$                                    | _      | 68     | _      | dBµV              |
|                | sensitivity               |                      | IF <sub>sens.</sub> (FM)   | 1                            | SW <sub>1</sub> →0, SW <sub>2</sub> →,V <sub>CC</sub> ,<br>SW <sub>3</sub> →ON                                   | _      | 77     | _      | EMF               |
|                |                           |                      |                            |                              | $SW_1 \rightarrow 510\Omega$ , $SW_2 \rightarrow V_{CC}$ , $SW_3 \rightarrow ON$                                 | _      | 69     |        | -                 |

|          | Characteristic                    | Symbol                   | Test<br>Cir–<br>cuit | Test Condition                                                                   | Min. | Тур. | Max. | Unit              |  |
|----------|-----------------------------------|--------------------------|----------------------|----------------------------------------------------------------------------------|------|------|------|-------------------|--|
|          | Gain                              | G <sub>V</sub>           | 1                    | V <sub>in</sub> = 26dBµV EMF                                                     | 28   | 57   | 85   | mV <sub>rms</sub> |  |
|          | Recovered output voltage          | V <sub>OD</sub>          | 1                    | V <sub>in</sub> = 60dBμV EMF                                                     | 50   | 75   | 100  |                   |  |
|          | Signal to noise ratio             | S/N                      | 1                    | V <sub>in</sub> = 60dBμV EMF                                                     | _    | 41   | _    | dB                |  |
|          | Total harmonic distortion         | THD                      | 1                    | V <sub>in</sub> = 60dBμV EMF                                                     | _    | 1.0  | _    | %                 |  |
|          | LED on sensitivity                | VL                       | 1                    | I <sub>L</sub> = 1mA                                                             | 21   | 26   | 31   | dBµV<br>EMF       |  |
|          | Local OSC buff.<br>output voltage | V <sub>OSC</sub> (AM)    | 1                    | f <sub>OSC</sub> = 1.45MHz                                                       | 350  | 500  | _    | m\/               |  |
| AM       |                                   |                          | 2                    | f <sub>OSC</sub> = 27MHz                                                         | _    | 500  | _    | mV <sub>p-p</sub> |  |
|          | IF count output voltage           | V <sub>IF</sub> (AM)     | 1                    | V <sub>in</sub> = 39dBμV EMF, SW <sub>3</sub> →ON                                | 350  | 500  | _    | $mV_{p-p}$        |  |
|          |                                   |                          |                      | $SW_1 \rightarrow 0$ , $SW_2 \rightarrow GND$ , $SW_3 \rightarrow ON$            | _    | 49   | _    |                   |  |
|          | IF count output                   | le.                      | 1                    | $SW_1 \rightarrow 510\Omega$ , $SW_2 \rightarrow GND$ , $SW_3 \rightarrow ON$    | _    | 42   | _    | dBµV<br>EMF       |  |
|          | sensitivity                       | IF <sub>sens. (AM)</sub> | !                    | $SW_1 \rightarrow 0$ , $SW_2 \rightarrow V_{CC}$ , $SW_3 \rightarrow On$         |      | 49   | _    |                   |  |
|          |                                   |                          |                      | $SW_1 \rightarrow 510\Omega$ , $SW_2 \rightarrow V_{CC}$ , $SW_3 \rightarrow ON$ | _    | 42   | _    |                   |  |
| Din/10   | 9) output resistance              | R <sub>19</sub>          | 1                    | FM mode                                                                          | _    | 0.6  | _    | kΩ                |  |
| 1 111(13 | e) output resistance              | N19                      | '                    | AM mode                                                                          | _    | 12   | _    | V77               |  |

|     | Characteri                          | istic    | Symbol                          | Test<br>Cir–<br>cuit | Test Condi                                                 | Min.                    | Тур. | Max. | Unit              |                   |
|-----|-------------------------------------|----------|---------------------------------|----------------------|------------------------------------------------------------|-------------------------|------|------|-------------------|-------------------|
|     | Input resistance                    |          | R <sub>IN</sub>                 | 1                    | _                                                          |                         | _    | 25   | _                 | kΩ                |
|     | Output resistance                   |          | R <sub>OUT</sub>                | 1                    | _                                                          |                         | _    | 5    |                   |                   |
|     | Max. composite signal input voltage |          | V <sub>in MAX</sub><br>(stereo) | 1                    | L + R = 90%, P = 10%<br>THD = 3%, SW <sub>9</sub> →LPF: ON |                         | _    | 350  | -                 | mV <sub>rms</sub> |
|     | Separation                          |          |                                 |                      | L + R = 135mV <sub>rms</sub>                               | f <sub>m</sub> = 100kHz | _    | 42   | _                 | dB                |
|     |                                     |          | Sep                             | -                    | P = 15mV <sub>rms</sub> ,<br>SW <sub>9</sub> →LPF: ON      | f <sub>m</sub> = 1kHz   | 35   | 42   |                   |                   |
|     |                                     |          |                                 |                      |                                                            | f <sub>m</sub> = 10kHz  | _    | 42   | I                 |                   |
|     | Total<br>harmonic<br>distortion     | Monaural | THD<br>(monaural)               |                      | V <sub>in</sub> = 150 mV <sub>rms</sub> (mono              | _                       | 0.2  | -    | %                 |                   |
| MPX |                                     | Stereo   | THD<br>(stereo)                 | 1                    |                                                            | _                       | 0.2  | _    |                   |                   |
|     | Voltage gain                        |          | G <sub>V</sub> (MPX)            | 1                    | V <sub>in</sub> = 150mV <sub>rms</sub> (mono)              |                         | -5   | -3   | -1                | dB                |
|     | Channel balance                     |          | C.B.                            | 1                    | V <sub>in</sub> = 150mV <sub>rms</sub> (mono)              |                         | -2   | 0    | 2                 | dB                |
|     | Stereo LED                          | ON       | V <sub>L</sub> (ON)             | 1                    | Pilot input                                                | _                       | 8    | 15   | mV <sub>rms</sub> |                   |
|     | sensitivity                         | OFF      | V <sub>L</sub> (OFF)            | '                    | i not input                                                | 2                       | 6    | I    |                   |                   |
|     | Stereo LED hysteresis               |          | $V_{H}$                         | 1                    | To LED turn off from<br>LED turn on                        |                         | _    | 2    | _                 | mV <sub>rms</sub> |
|     | Capture range                       |          | C.R.                            | 1                    | P = 15mV <sub>rms</sub>                                    | _                       | ±1.3 | _    | %                 |                   |
|     | Signal to noise ratio               |          | S/N                             | 1                    | V <sub>in</sub> = 150mV <sub>rms</sub> (mono               | _                       | 78   | _    | dB                |                   |


## **Test Circuit 1**



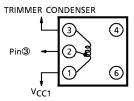

### Coil Data (test circuit 1)

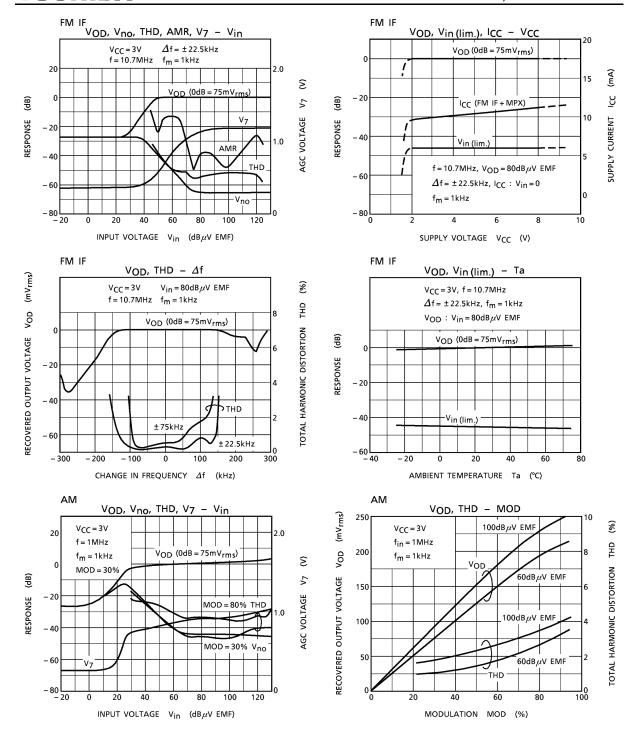
| O-HN-                 | f      | L<br>(µH) | C <sub>o</sub> (pF) | Qo  | Turn |     |     |     | Wire     | DED (O-UN-)       |
|-----------------------|--------|-----------|---------------------|-----|------|-----|-----|-----|----------|-------------------|
| Coil No.              |        |           |                     |     | 1–2  | 2–3 | 1–3 | 4–6 | (mm)     | RED. (Coil No.)   |
| T <sub>1</sub> AM OSC | 796kHz | 288       | _                   | 115 | 13   | 73  | _   | _   | 0.08 UEW | 4147-1356-038 (S) |
| T <sub>2</sub> AM IFT | 455KHz | _         | 180                 | 120 |      | _   | 180 | 15  | 0.06 UEW | 2150-2162-165 (S) |

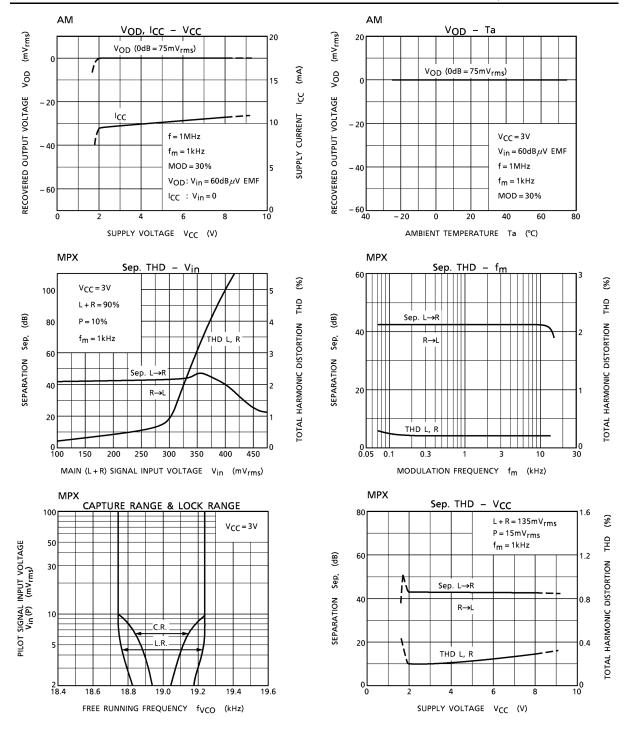
(S): SUMIDA ELECTRIC Co., Ltd.

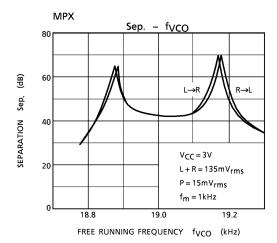


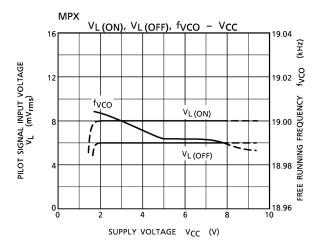
## **Test Circuit 2**





## Coil Data (test circuit 2)


| Coil No. | f       | L    | C <sub>o</sub> (pF) Q <sub>o</sub> |     | Turn |     |     |      | Wire            | REF. (Coil No.) |
|----------|---------|------|------------------------------------|-----|------|-----|-----|------|-----------------|-----------------|
| COII NO. |         | (µH) |                                    | 1–2 | 2–3  | 1–3 | 4–6 | (mm) | NEF. (COII NO.) |                 |
| T AM OSC | 7.96MHz | 1.4  | _                                  | 84  | 1    | 6   | 7   | _    | 0.08 UEW        | (T) 7PL-1344Y   |

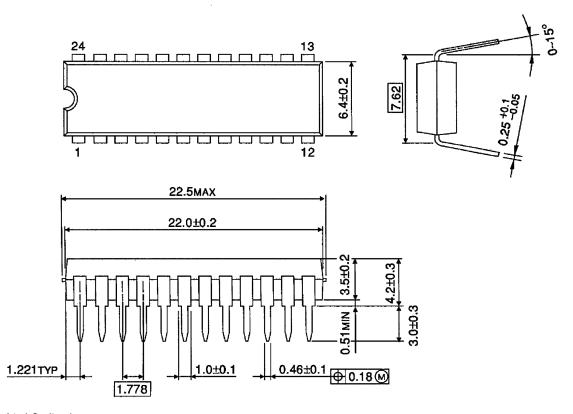

(T): TOKO Co., Ltd.


T: AM OSC







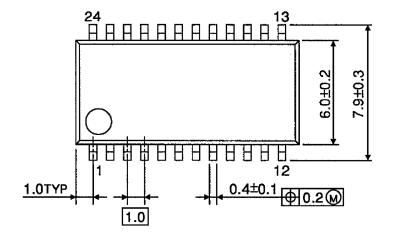


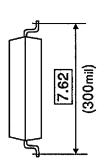


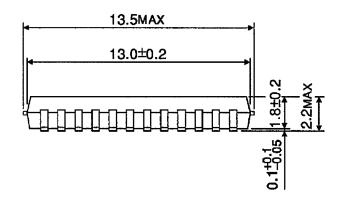

# **Package Dimensions**

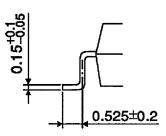
SDIP24-P-300-1.78

Unit: mm





Weight: 1.2g (typ.)


Unit: mm


# **Package Dimensions**

SSOP24-P-300-1.00









Weight: 0.31g (typ.)

## RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
  rights of the third parties which may result from its use. No license is granted by implication or otherwise under
  any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.