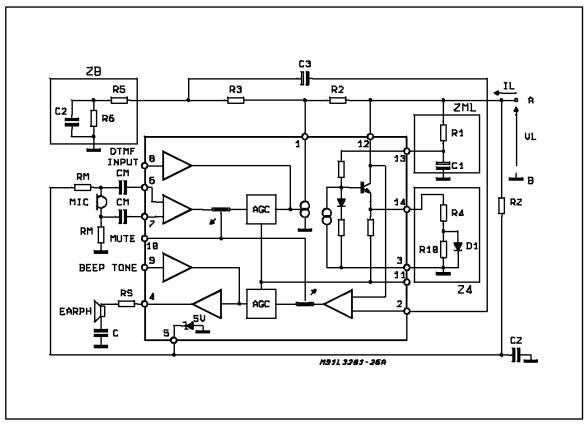
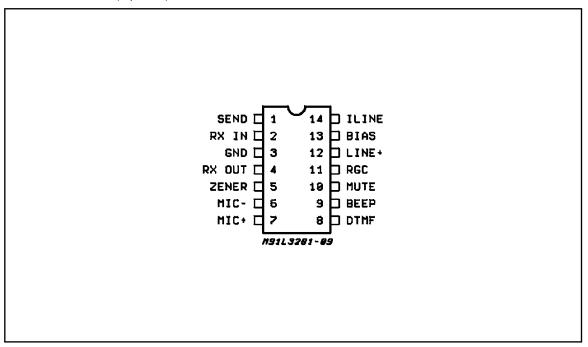

LOW VOLTAGE TELEPHONE SPEECH CIRCUITS

PRELIMINARY DATA


- OPERATION DOWN TO 1.6V / 6.5mA
- DTMF & BEEP TONE INPUTS
- EXTERNAL MUTING FOR EARPHONE AND MICROPHONE
- SUITABLE FOR DYNAMIC EARPHONE AND DYNAMIC OR ELECTRET MICROPHONE
- AGC CONTROL ON BOTH SENDING AND RECEIVING

DESCRIPTION

The L3281 is an electronic speech circuit developed to replace hybrid circuits in telephone sets that can be operated in parallel with other phones.



BLOCK DIAGRAM

June 1993 1/10

PIN CONNECTION (top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
	Faranteter	DIP-14	SO-14	Oilit
V_{L}	Line Voltage (3 ms pulse)	15		V
IL	Line Current	150		mA
Ptot	Total Power Dissipation, T _{amb} = 55°C	1.0 0.6		W
T _{op}	Operating Temperature - 20 to 55		°C	
Tj	Junction Temperature	- 65 to 150		°C

THERMAL DATA

	Symbol	Parameter	Va	Unit	
Symbol	Faranietei	DIP-14	SO-14) Oilit	
	R _{th j-amb}	Thermal Resistance Junction Ambient Max	90	130	°C/W

TEST CIRCUITS

Figure 1.

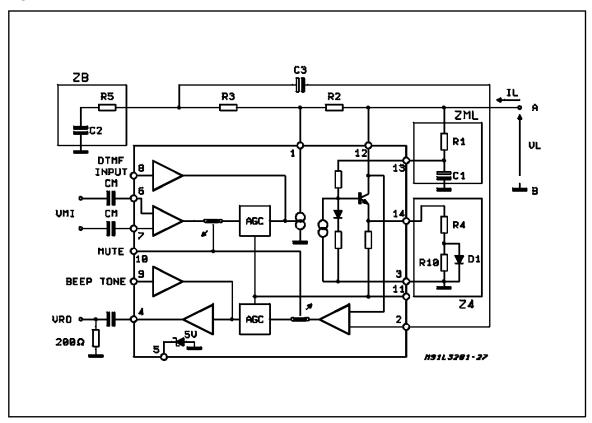


Figure 2.

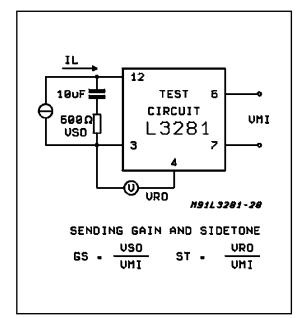
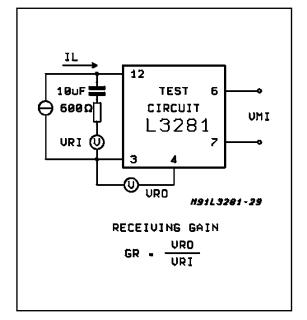



Figure 3.

ELECTRICAL CHARACTERISTICS I_L = 20 to 100mA; R4 =(51 Ω // diode) + 33 Ω ; T = 25°C; f = 1kHz; Unless Otherwise Specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _I	Line Voltage	I _L = 6.5mA I _L = 20mA I _L = 50mA I _L = 80mA		1.65 3.4 6.0 8	3.7 6.5 9.5	V V V
CMRR	Common Mode Rej. Ratio		50			dB
G _{tx}	Sending Gain	$V_{mi} = 10 \text{mV}; I_L = 20 \text{mA}$	30	31.5	33	dB
DG _{tx}	Delta Sending Gain	$V_{mi} = 10 \text{mV}; I_L = 70 \text{mA}$	- 7.2	-5.7	-4.2	dB
THD _{tx}	Sending Distortion	$V_{so} = 700 \text{mV}; I_L = 20 \text{mA}$			5	%
N _{tx}	Sending Noise	$V_{mi} = 0V; I_L = 50mA$		- 70		dB
Z _{ml}	Mic. Input Impedance	V _{mi} = 10mV	40			kΩ
G_rx	Receiving Gain	$I_L = 20 \text{mA}; V_{ri} = 0.2 \text{V}$	- 10.7	- 9.2	- 7.7	dB
DG _{rx}	Delta Receiving Gain	$I_L = 70 \text{mA}; V_{ri} = 0.2 \text{V}$	- 7.2	- 5.7	- 4.2	dB
THD _{rx}	Receiving Distortion	V_{ro} = 350mV; Load = 350 Ω V_{ro} = 300mV; I_L = 10 mA			5 5	% %
N _{rx}	Receiving Noise	V _{ri} = 0V		100		μV
Z _{ro}	Rec. Output Impedance	Load = 200Ω ; $V_{ro} = 50V$		10		Ω
	Sidetone	V _{mi} = 10mV		10	20	dB
Z _m	Line Match. Impedance	V _{ri} = 0.2V	500	600	700	Ω
V _{so}	Sending Output Voltage	I _L = 6.5mA; THD = 5%	100			mV
I _{ro}	Receiving Output Current	I _L = 6.5mA; THD = 5%	0.5			mAp
MU_{lo}	Mute Input Low	Dialing Mode		50	100	μΑ
MU_{hl}	Mute Input Open	Speaking Mode			1	μΑ
G _{mf}	DTMF Gain	V _{mf IN} = 10mV	14.5	16	17.5	dB
R _{mf}	DTMF Input Impedance		5	10		kΩ
THD _{mf}	DTMF Distortion	$V_{mf LN} = 140 mV$			5	%
G _{beep}	Beeptone Gain	V _{beep IN} = 25mV		8.5		dB
R _{beep}	Beeptone Input Impedance		5.5	8		kΩ
THD _{beep}	Beeptone Distortion	V _{beep IN} = 100mV; I _L = 20mA		0.5	5	%
Vz	Zener Voltage (Pin 5)	$I_z = 1 \text{ mA}$	4.2	5.1	6.2	V
I _{leak}	Leakage Current,Vpin5 = 3V			20		μΑ

LOGIC OF MUTE SWITCHING

MUTE	DTMF	BEEP	MIC IMP	RX IMP
LOW	ACTIVE TO LINE	ACTIVE TO EARPHONE	MUTED	MUTED
(DIAL)	OUTPUT	OUTPUT		
OPEN	ACTIVE TO LINE	ACTIVE TO EARPHONE	ACTIVE	ACTIVE
(SPEECH)	OUTPUT	OUTPUT		

CIRCUIT DESCRIPTION

TWO TO FOUR WIRE CONVERSION

The L3281AB is based on a Wheastone bridge configuration. To balance the bridge the following relation must be satisfied:

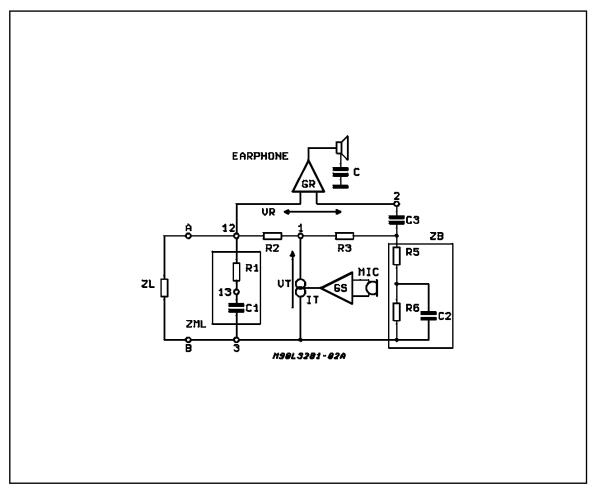

$$\frac{ZI/Zm}{Zb} = \frac{R2}{R3}$$

Figure 4: 2/4 Wire Conversion

The AC signal from the microphone is sent to one diagonal of the bridge (pins 1 and 3). A small percentage of the signal power is lost on Zb (being Zb > (Zm//Zi)); the main part is sent to the line via R2.

In receiving mode, the AC signal coming from the LINE is sensed across the second diagonal of the bridge (pins 12 and 2).

The impedance Zm and Zb can be complex.

DC CHARACTERISTIC

The fig.5 shows the equivalent simplified circuit of the DC regulator that provides to give the opportune DC impedance Zdc.

$$VL = \left[\frac{Idc \cdot Z4}{RB} \cdot (RA + RB) \right] + VD + VR1$$

$$VL = \left[(Idc \cdot Z4) \cdot \left(\frac{RA}{RB} + 1 \right) \right] + VD + VR1$$

since RA = RB

$$VL = (Idc \cdot Z4 \cdot 2) + VD + VR1$$

When IL 18 mA and considering neglectible the VD + VR1 variation versus line current:

$$ZDC = \frac{\Delta VL}{\Delta Idc} = 2 \cdot Z4$$

At IL = 6.5 mA no current flows through Z4 but only in the rest of the circuit for internal biasing (lo;la). The bias current lo is fixed by the resistor R2. The line voltage in this case is:

The Fig.6 shows the DC characteristic (voltage between pin 12 and pin 3 versus line current). The device own an equivalent zener voltage at pin 5 that can be used as supply voltage for electret microphone (see Block Diagram).

The value of the resistor R2 and the capacitor C2 should be chosen in order to not affect the AC line inpedance. The Fig.7 shows the zener

Figure 5: Equivalent Simplified Circuit

equivalent.

The zener voltage will be:

$$Vz = \left(\frac{70K}{13.6K} + 1\right) \cdot Vbe$$

It is possible to supply 1mA to the electrete voltage if VL > (1mA + Iz) · Rz + Vz

Figure 6: Low Voltage Speech Circuit.

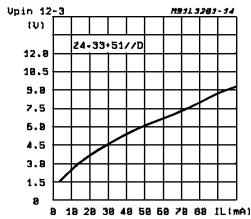
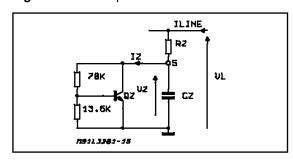
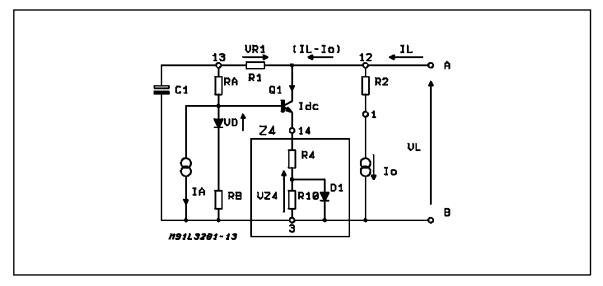




Figure 7: Zener Equivalent.

6/10

AC CHARACTERISTIC

The AC Impedance measured at line terminals is equal to:

$$Zm = (R1 + \frac{1}{iwC1}) / / (R2 + R3 + Zb)$$

The value of the capacitor C1 must be In the range of 22 μF to 100 μF .

The external resistor R1 can be replaced by a resistor/capacitor network in order to realize a complex Impedance Zm.

TRANSMITTING CIRCUIT

The first block of the TX stage is basically a differential amplifier which converts voltage to current. The inputs are internally polarized at 300 mVdc. The differential Input impedance is $60 \text{ K}\Omega$ to allow

Figure 8: Equivalent Transmitting Circuit.

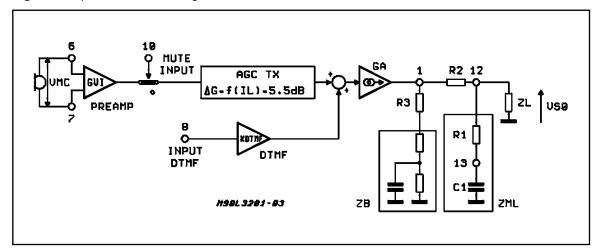
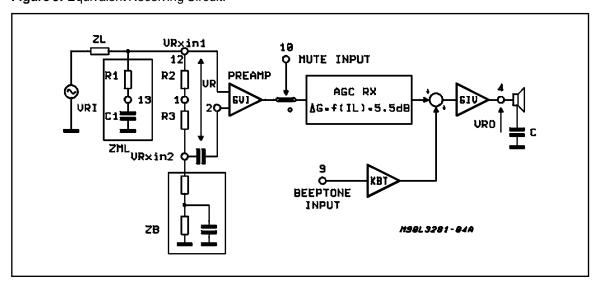
a good matching to microphone. The AGC in TX is function of voltage at pin 14 in order to decrease to max gain of 5.5dB to 6.0dB when the line current increases.

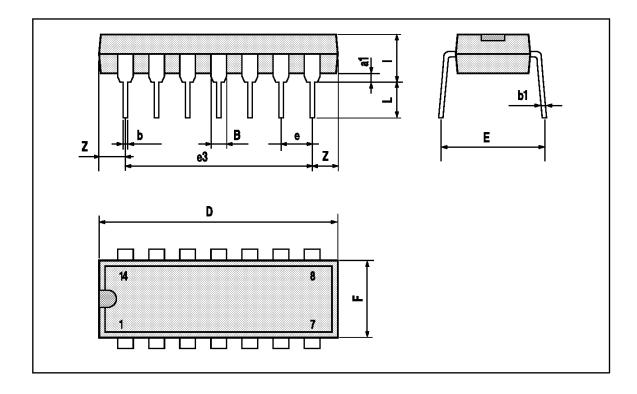
RECEIVING CIRCUIT

Fig.9 shows the equivalent receiving circuit. The differential input of RX signal across R2+R3 is transferred to the AGC block when the mute signal (pin 10) is not active.

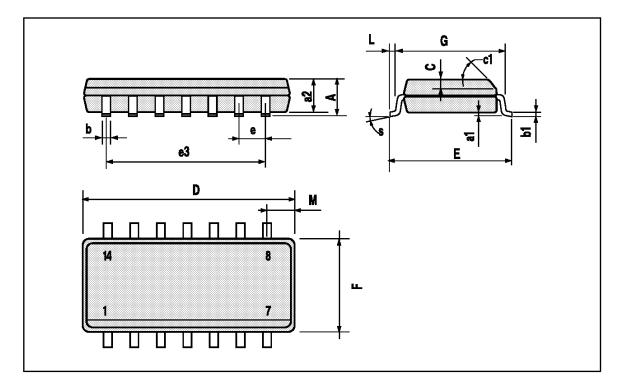
The AGC in RX is a function of the voltage at pin 14 and decreases the gain when the line current increases (5.5dB to 6.0dB).

The final stage is a single ended amplifier with low output impedance optimized to drive magnetic/dynamic transducers.


Figure 9: Equivalent Receiving Circuit.

SGS-THOMSON MICROELECTRONICS


DIP14 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

SO14 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
Din.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.069	
a1	0.1		0.2	0.004		0.008	
a2			1.6			0.063	
b	0.35		0.46	0.014		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.020		
c1			45°	(typ.)			
D	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.15		0.157	
L	0.5		1.27	0.020		0.050	
М			0.68			0.027	
S	8° (max.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

10/10

