PSC Series Extended Data Sheet

Input voltage up to 144 VDC
 Single output of 12-48 VDC
 No input to output isolation

- High efficiency up to 97%
- Extremely wide input voltage range
- Very good dynamic properties
- Input undervoltage lock-out
- External output voltage adjustment and inhibit
- Two temperature ranges
- Continuous no-load and short-circuit proof
- No derating

Safety according to IEC/EN 60950
. ${ }^{2} \mathrm{~S}_{15}$
C

Summary

The PSC series of positive switching regulators is designed as power supply modules for electronic systems. Their major advantages include a high level of efficiency that remains virtually constant over the entire input voltage range, high reliability, low ripple and excellent dynamic response.

Modules with input voltages up to 144 V are specially designed for battery driven mobile applications. The case design allows operation at nominal load up to $71^{\circ} \mathrm{C}$ without additional cooling.

Model Selection and Key Data

Table 1: Type survey

Output voltage $V_{\text {onom }}[\mathrm{V}]$	Output current $I_{\text {onom }}[\mathrm{A}]$	Input voltage range $V_{\mathrm{i}}[\mathrm{V}]$	Input voltage $V_{\text {inom }}[\mathrm{V}]$	Efficiency ${ }^{2}$		Type designation
12	6	$18-144$	60	88	89	PSC 126-7iR
15	6	$22-144$	60	89	90	PSC $156-7 \mathrm{iR}$
24	6	$31-144$	60	93	94	PSC $246-7 \mathrm{iR}$
36	6	$44-144$	80	95	96	PSC $366-7 \mathrm{iR}$
48	6	$58-144$	80	96	97	PSC $486-7 \mathrm{iR}$

${ }^{1}$ Surges uo to 156 V for 2 s . See also: Electrical Input Data: $\Delta V_{\text {io }}$ min. (min. difference $V_{i}-V_{0}$)
${ }^{2}$ Efficiency at $V_{\text {inom }}$ and $I_{\text {onom }}$.
Non standard input/output configurations or special custom adaptions are available on request.
Table of Contents Page Page
Electromagnetic Compatibility (EMC) 7
Summary 1
Model Selection and Key Data1 Immunity to Environmental Conditions8
Part Number Description 2 Mechanical Data 9
Functional Description 2 Safety and Installation Instructions 9
Electrical Input Data 3 Description of Options 11
Electrical Output Data 4 Accessories 12
Auxiliary Functions 6 EC-Declaration of Conformity 13

Part Number Description

${ }^{1}$ Feature R excludes option P and vice versa.
Example: \quad PSC 126-7LiPC $=A$ positive switching regulator with a $12 \mathrm{~V}, 6 \mathrm{~A}$ output, ambient temperature range of -25 to $71^{\circ} \mathrm{C}$, input filter, inhibit input, output adjust potentiometer and thyristor crowbar.

Functional Description

The switching regulators are designed using the buck converter topology. See also: Technical Information: Topologies. The input is not electrically isolated from the output. During the on period of the switching transistor, current is transferred to the output and energy is stored in the output choke. During the off period, this energy forces the current to continue flowing through the output, to the load and back through the freewheeling diode. Regulation is accomplished by varying the on to off duty ratio of the power switch.

These regulators are ideal for a wide range of applications, where input to output isolation is not necessary, or where already provided by an external front end (e.g. a transformer with rectifier). To optimise customer's needs, additional options and accessories are available.

Fig. 1
Block diagram

Electrical Input Data

General Conditions: $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless T_{C} is specified
Table 2a: Input data

Input			PSC 126		PSC 156		PSC 246			Unit
Characteristics		Conditions	min	typ max	min	typ max	min	typ	max	
V_{i}	Operating input voltage ${ }^{1}$	$\begin{aligned} & I_{0}=0-I_{\mathrm{nom}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	18	144	22	144	31		144	VDC
$\Delta V_{\text {io min }}$	Min. diff. voltage $V_{i}-V_{0}$			6		7			7	
V_{i} 。	Undervoltage lock-out			12		15		19		
$l_{i 0}$	No load input current	$I_{0}=0, V_{i \text { min }}-V_{i \text { max }}$		35		35			35	mA
$l_{\text {inr } \mathrm{p}}$	Peak value of inrush current	$V_{\text {inom }}$ without option L	250		250		250			A
$t_{\text {inr r }}$	Rise time		5		5		5			$\mu \mathrm{s}$
$t_{\text {inr }} \mathrm{h}$	Time to half-value			40		40		40		
$l_{\text {inr }} \mathrm{p}$	Peak value of inrush current	$\begin{aligned} & \hline V_{\text {inom }} \\ & \text { with option L } \end{aligned}$	350		350		350			A
$t_{\text {inr r }}$	Rise time		25		25		25			$\mu \mathrm{s}$
$t_{\text {inr }} \mathrm{h}$	Time to half-value		125		125		125			
$u_{\text {iRFI }}$	Input RFI level, EN 55011/22 $0.15-30 \mathrm{MHz}$	$V_{\text {inom }}, I_{\text {nom }}$ with option L		$\begin{gathered} \mathrm{A} \\ \mathrm{~B}^{2} \end{gathered}$		A ${ }^{\text {2 }}$			A B^{2}	

Table 2b: Input data

Input			PSC 366			PSC 486			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	
V_{i}	Operating input voltage ${ }^{1}$	$\begin{aligned} & I_{0}=0-I_{\text {onom }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	44		144	58		144	VDC
$\Delta V_{\text {io min }}$	Min. diff. voltage $V_{\mathrm{i}}-V_{0}$				8			10	
$V_{\text {io }}$	Undervoltage lock-out			29			40		
$l_{i 0}$	No load input current	$I_{0}=0, V_{\text {imin }}-V_{\text {i max }}$			40			45	mA
$l_{\text {inrp }}$	Peak value of inrush current	$\begin{aligned} & V_{\text {inom }} \\ & \text { without option L } \end{aligned}$	250			250			A
$t_{\text {inrr }}$	Rise time		5			5			$\mu \mathrm{s}$
$t_{\text {inr }} \mathrm{h}$	Time to half-value		40			40			
$l_{\text {inrp }}$	Peak value of inrush current	$\begin{aligned} & V_{\text {inom }} \\ & \text { with option L } \end{aligned}$	350			350			A
$t_{\text {inrr }}$	Rise time		25			25			$\mu \mathrm{s}$
$t_{\text {inr }} \mathrm{h}$	Time to half-value		125			125			
$u_{\text {iRFI }}$	Input RFI level, EN 55011/22 $0.15-30 \mathrm{MHz}$	$V_{\text {inom, }} I_{\text {o nom }}$ with option L			$\begin{gathered} A \\ B^{2} \end{gathered}$			A B^{2}	

${ }^{1}$ Surges up to 156 V for 2 s (complying to LES-DB standard for $V_{\text {Bat. }}=110 \mathrm{~V}$).
${ }^{2}$ With external input capacitor $C_{\mathrm{e}}=470 \mu \mathrm{~F} / 200 \mathrm{~V}$ and option L.

External Input Circuitry

The sum of the lengths of the supply lines to the source or to the nearest capacitor $\geq 100 \mu \mathrm{~F}(\mathrm{a}+\mathrm{b})$ should not exceed 5 m unless option L is fitted. This option is recommended in order to prevent power line oscillations and reduce superimposed interference voltages. See also: Technical Information: Application Notes.

Fig. 2
Switching regulator with long supply lines.

Electrical Output Data

General Conditions:
$-T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless T_{C} is specified

- With R or option P, output voltage $V_{0}=V_{0 \text { nom }}$ at $I_{0 \text { nom }}$

Table 3a: Output data

Outpu					C 12			C 15			C 24		Unit
Characteristics			Conditions	min	typ	max	min	typ	max	min	typ	\max	
Vo	Output voltage		$V_{\mathrm{i} \text { nom }}, I_{\text {o nom }}$	11.93		12.07	14.91		15.09	23.86		24.14	V
10	Output current ${ }^{1}$		$\begin{aligned} & V_{\mathrm{imin}}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	0		6.0	0		6.0	0		6.0	A
$I_{0 L}$	Output current limitation response			6.0		7.8	6.0		7.8	6.0		7.8	
u_{0}	Output voltage noise	Switching freq.	$V_{\mathrm{i} \text { nom }} I_{0}$ nom IEC/EN 61204^{2} $\mathrm{BW}=20 \mathrm{MHz}$		30	45		50	70		50	70	mV pp
		Total			34	49		54	74		54	75	
$\Delta V_{0} \mathrm{U}$	Static line regulation		$V_{\text {i min }}-V_{\text {i max }}, I_{\text {onom }}$		25	40		25	40		80	100	mV
$\Delta V_{\text {ol }}$	Static load regulation		$V_{\text {i nom, }}, I_{0}=0-I_{0}$ nom		30	50		30	50		60	100	
u_{0} d	Dynamic load regulation	Voltage deviat.	$V_{\text {inom }}$ $I_{\text {o nom }} \leftrightarrow 1 / 3 I_{\text {o nom }}$ IEC/EN 61204^{2}		100			100			120		
$t_{\text {d }}$		Recovery time			60			60			80		$\mu \mathrm{S}$
$\alpha_{\text {Uo }}$	Temperature coefficient $\Delta V_{0} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\mathrm{imin}}-V_{\mathrm{imax}} \\ & I_{0}=0-I_{\mathrm{onnom}} \end{aligned}$			± 2			± 3			± 5	mV / K
					± 0.02			± 0.02			± 0.02	\%/K	

Table 3b: Output data

Output				PSC 366				PSC 486		Unit
Characteristics			Conditions	min	typ	max	min	typ	max	
V_{0}	Output voltage		$V_{\text {inom, }}, l_{\text {onom }}$	35.78		36.22	47.71		48.29	V
10	Output current ${ }^{1}$		$\begin{aligned} & V_{i_{\text {min }}}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	0		6.0	0		6.0	A
$\mathrm{IOL}^{\text {L }}$	Output current limitation response			6.0		7.8	6.0		7.8	
u_{0}	Output voltage noise	Switching freq.	$V_{\text {inom }}, I_{\text {nom }}$ IEC/EN $61204{ }^{2}$ $B W=20 \mathrm{MHz}$		50	90		55	110	$m V_{\text {pp }}$
		Total			54	94		59	115	
$\Delta V_{\text {ou }}$	Static line regulation		$V_{\text {imin }}-V_{\text {imax }}, I_{\text {onom }}$		200	300		100	200	mV
ΔV_{01}	Static load regulation		$V_{\text {inom }} I_{0}=0-I_{\text {o nom }}$		120	200		180	250	
$u_{0 d}$	Dynamic load regulation	Voltage deviat.	$V_{\text {inom }}$ $I_{\text {onom }} \leftrightarrow 1 / 3 I_{0 \text { nom }}$ IEC/EN $61204{ }^{2}$		140			150		
$t_{\text {d }}$		Recovery time			100			100		$\mu \mathrm{s}$
α_{U}	Temperature coefficient $\Delta V_{\mathrm{o}} / \Delta T_{\mathrm{C}}\left(T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }}\right)$		$\begin{aligned} & V_{\text {imin }}-V_{\text {max }} \\ & I_{0}=0-I_{0 \text { nom }} \end{aligned}$			± 8			± 10	mV/K
					± 0.02			± 0.02	\%/K	

${ }^{1}$ See also: Thermal Considerations.
${ }^{2}$ See: Technical Information: Measuring and Testing.

Fig. 3
Dynamic load regulation.

Thermal Considerations

When a switching regulator is located in free, quasi-stationary air (convection cooling) at a temperature $T_{\mathrm{A}}=71^{\circ} \mathrm{C}$ and is operated at its nominal output current I_{0} nom, the case temperature T_{C} will be about $95^{\circ} \mathrm{C}$ after the warm-up phase, measured at the Measuring point of case temperature T_{C} (see: Mechanical Data).
Under practical operating conditions, the ambient temperature T_{A} may exceed $71^{\circ} \mathrm{C}$, provided additional measures (heat sink, fan, etc.) are taken to ensure that the case temperature T_{C} does not exceed its maximum value of $95^{\circ} \mathrm{C}$.
Example: Sufficient forced cooling allows $T_{\text {A max }}=85^{\circ} \mathrm{C}$. A simple check of the case temperature $T_{\mathrm{C}}\left(T_{\mathrm{C}} \leq 95^{\circ} \mathrm{C}\right)$ at full loadi/8nsures correct operation of the system.

Fig. 4
Output current derating versus temperature

Output Protection

A voltage suppressor diode which in worst case conditions fails into a short circuit (or a thyristor crowbar, option C), protects the output against an internally generated overvoltage. Such an overvoltage could occur due to a failure of either the control circuit or the switching transistor. The output protection is not designed to withstand externally applied overvoltages. The user should ensure that systems with Power-One power supplies, in the event of a failure, do not result in an unsafe condition (fail-safe).

Parallel and Series Connection

Outputs of equal nominal voltages can be parallel-connected. However, the use of a single unit with higher output power, because of its power dissipation, is always a better solution.
In parallel-connected operation, one or several outputs may operate continuously at their current limit knee-point which will cause an increase of the heat generation. Consequently, the max. ambient temperature value should be reduced by 10 K .
Outputs can be series-connected with any other module. In series-connection the maximum output current is limited by the lowest current limitation. Electrically separated source voltages are needed for each module!

Short Circuit Behaviour

A constant current limitation circuit holds the output current almost constant whenever an overload or a short circuit is applied to the regulator's output. It acts self-protecting and recovers - in contrary to the fold back method - automatically after removal of the overload or short circuit condition.

Fig. 5
Overload, short-circuit behaviour V_{0} versus I_{0}.

Auxiliary Functions

i Inhibit for Remote On and Off
Note: With open i-input, output is enabled ($V_{0}=o n$)
The inhibit input allows the switching regulator output to be disabled via a control signal. In systems with several units, this feature can be used, for example, to control the activation sequence of the regulators by a logic signal (TTL, CMOS, etc.). An output voltage overshoot will not occur when switching on or off.

Fig. 6
Typical inhibit current $l_{\text {inh }}$ versus inhibit voltage $V_{\text {inh }}$

Fig. 7
Definition of $l_{\text {inh }}$ and $V_{\text {inh }}$

Changing the Shape of Power

Fig. 8
Output response as a function of inhibit signal
R Control for Output Voltage Adjustment
Note: With open R input, $V_{0} \approx V_{0}$ nom. R excludes option P.
The output voltage V_{0} can either be adjusted with an external voltage ($V_{\text {ext }}$) or with an external resistor (R_{1} or R_{2}). The adjustment range is $0-108 \%$ of $V_{\text {o nom. }}$. The minimum differential voltage $\Delta V_{\text {io min }}$ between input and output (see: Electrical Input Data) should be maintained. Undervoltage lockout $=$ Minimum input voltage.

Fig. 9 Voltage adjustment with $V_{\text {ext }}$ between R and G (Go-)
a) $V_{0}=0-108 \% V_{\text {onom }}$, using $V_{\text {ext }}$ between R and $G(G o-)$:

$$
V_{\mathrm{ext}} \approx 2.5 \mathrm{~V} \cdot \frac{V_{\mathrm{o}}}{V_{\text {onom }}} \quad V_{\mathrm{o}} \approx V_{\mathrm{onom}} \cdot \frac{V_{\mathrm{ext}}}{2.5 \mathrm{~V}}
$$

Caution: To prevent damage $V_{\text {ext }}$ should not exceed 20 V , nor be negative and R_{2} should never be less than $47 \mathrm{k} \Omega$.

Fig. 10 Voltage adjustment with external resistor R_{1} or R_{2}
b) $V_{0}=0-100 \% V_{\text {o nom }}$, using R_{1} between R and $G(G o-)$:

$$
R_{1} \approx \frac{4000 \Omega \approx V_{0}}{V_{\text {onom }}-V_{0}} \quad V_{0} \approx \frac{V_{\mathrm{onom}} \approx R_{1}}{R_{1}+4000 \Omega}
$$

c) $V_{0}=V_{\text {onom }}-V_{\text {omax }}$, using R_{2} between R and $V o+$:
$V_{\text {o } \max }=V_{\text {onom }}+8 \%$

$$
\begin{aligned}
& R_{2} \approx \frac{4000 \Omega \cdot V_{0} \cdot\left(V_{\text {o nom }}-2.5 \mathrm{~V}\right)}{2.5 \mathrm{~V} \cdot\left(V_{\mathrm{o}}-V_{\mathrm{onom}}\right)} \\
& V_{\mathrm{onom}} \cdot 2.5 \mathrm{~V} \cdot R_{2} \\
& V_{\mathrm{o}} \approx \frac{-\left(R_{2}+4000 \Omega\right)-V_{\text {o nom }} \cdot 4000 \Omega}{2.5 \mathrm{~V} \cdot()^{2}}
\end{aligned}
$$

LED Output Voltage Indicator

A yellow output indicator LED shines when the output voltage is higher than approx. 3 V .

Table 4: Inhibit characteristics

Characteristics			Conditions	min	typ	max	Unit
$V_{\text {inh }}$	Inhibit input voltage to keep regulator output voltage -	$V_{0}=$ on	$\begin{aligned} & V_{i_{\text {min }}}-V_{\text {imax }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	-50		+0.8	VDC
		$V_{0}=$ off		+2.4		+50	
t_{r}	Switch-on time after inhibit command		$\begin{aligned} & V_{\mathrm{i}}=V_{\text {inom }} \\ & R_{\mathrm{L}}=V_{\mathrm{onom}} / I_{\mathrm{onom}} \end{aligned}$		16		ms
$t_{\text {f }}$	Switch-off time after inhibit command				21		
$l_{\text {i inh }}$	Input current when inhibited		$V_{\mathrm{i}}=V_{\text {inom }}$		10		mA

Electromagnetic Compatibility (EMC)

Electromagnetic Immunity

General condition: Case not earthed.
Table 5: Immunity type tests

Phenomenon	Standard ${ }^{1}$	Class Level	Coupling mode ${ }^{2}$	Value applied	Waveform	Source Imped.	Test procedure	$\begin{aligned} & \text { In } \\ & \text { oper. } \end{aligned}$	Perform.
1 MHz burst disturbance	$\begin{aligned} & \text { IEC } \\ & 60255-22-1 \end{aligned}$	III	i/o, i/c, o/c	$2500 \mathrm{~V}_{\mathrm{p}}$	400 damped1 MHz waves $/ \mathrm{s}$	200Ω	2 s per coupling mode	yes	A^{5}
			+i/-i, +o/-o	$1000 \mathrm{~V}_{\mathrm{p}}$					
Voltage surge	IEC 60571-1		i/c, +i/-i	$800 \mathrm{~V}_{\mathrm{p}}$	$100 \mu \mathrm{~s}$	100Ω		yes	B
				$1500 \mathrm{~V}_{\mathrm{p}}$	$50 \mu \mathrm{~s}$		1 pos. and 1 neg. voltage surge per coupling mode		
				$3000 \mathrm{~V}_{\mathrm{p}}$	$5 \mu \mathrm{~s}$				
				$4000 \mathrm{~V}_{\mathrm{p}}$	$1 \mu \mathrm{~s}$				
				$7000 \mathrm{~V}_{\mathrm{p}}$	100 ns				
Electrostatic discharge	$\begin{array}{\|l\|} \hline \text { IEC/EN } \\ 61000-4-2 \end{array}$	4	contact discharge to case	$8000 \mathrm{~V}_{\mathrm{p}}$	1/50 ns	330Ω	10 positive and 10 negative discharges	yes	A^{45}
Electromagnetic field	$\begin{array}{\|l\|} \hline \text { IEC/EN } \\ 61000-4-3 \end{array}$	3	antenna	$10 \mathrm{~V} / \mathrm{m}$	AM 80\% 1 kHz		$80-1000 \mathrm{MHz}$	yes	A
Electrical fast transients/burst	$\begin{array}{\|l\|} \hline \text { IEC/EN } \\ 61000-4-4 \end{array}$	4	i/c, +i/-i	$4000 \mathrm{~V}_{\mathrm{p}}$	bursts of $5 / 50 \mathrm{~ns}$ 5 kHz rep. rate transients with 15 ms burst duration and a 300 ms period	50Ω	60 s positive 60 s negative bursts per coupling mode	yes	A^{45}
Surge	$\begin{aligned} & \text { IEC/EN } \\ & \text { 61000-4-5 } \end{aligned}$	3	i/c	$2000 \mathrm{~V}_{\mathrm{p}}$	1.2/50 $\mu \mathrm{s}$	12Ω	5 pos. and 5 neg. surges per coupling mode	yes	A ${ }^{4}$
			+i/-i	$1000 \mathrm{~V}_{\mathrm{p}}$		2Ω			
Conducted disturbances	$\begin{array}{\|l\|} \hline \text { IEC/EN } \\ 61000-4-6 \end{array}$	3	i, o, signal wires	$\begin{aligned} & 140 \mathrm{~dB} \mathrm{\mu V} \\ & (10 \mathrm{VAC}) \end{aligned}$	AM 80\% 1 kHz	150Ω	$0.15-80 \mathrm{MHz}$	yes	A

${ }^{1}$ For related and previous standards see: Technical Information: Safety \& EMC. ${ }^{2} \mathrm{i}=$ input, $\mathrm{o}=$ output, $\mathrm{c}=$ case.
${ }^{3} A=$ Normal operation, no deviation from specifications, B = Normal operation, temporary deviation from specs possible.
${ }^{4}$ Option L neccessary. ${ }^{5}$ With option C, manual reset might be necessary.

Electromagnetic Emission

For emission levels refer to: Electrical Input Data.

Fig. 11
Typical disturbance voltage (quasi-peak) at the input according to EN 55011/22 measured at $V_{\mathrm{i} \text { nom }}$ and $I_{\text {o nom }}$.

Immunity to Environmental Conditions

Table 6: Mechanical stress

Test Method		Standard	Test Conditions		Status
Ca	Damp heat steady state	IEC/DIN 60068-2-3 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	$\begin{aligned} & 40 \pm 2{ }^{\circ} \mathrm{C} \\ & 93+2 /-3 \% \\ & 56 \text { days } \end{aligned}$	Unit not operating
Ea	Shock (half-sinusoidal)	IEC/EN/DIN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & 100 \mathrm{~g}_{\mathrm{n}}=981 \mathrm{~m} / \mathrm{s}^{2} \\ & 6 \mathrm{~ms} \\ & 18 \text { (3 each direction) } \end{aligned}$	Unit operating
Eb	Bump (half-sinusoidal)	IEC/EN/DIN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & 40 \mathrm{~g}_{\mathrm{n}}=392 \mathrm{~m} / \mathrm{s}^{2} \\ & 6 \mathrm{~ms} \\ & 6000 \text { (1000 each direction) } \end{aligned}$	Unit operating
Fc	Vibration (sinusoidal)	IEC/EN/DIN 60068-2-6 MIL-STD-810D section 514.3	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	$\begin{aligned} & 0.35 \mathrm{~mm}(10-60 \mathrm{~Hz}) \\ & 5 \mathrm{~g}_{\mathrm{n}}=49 \mathrm{~m} / \mathrm{s}^{2}(60-2000 \mathrm{~Hz}) \\ & 10-2000 \mathrm{~Hz} \\ & 7.5 \mathrm{~h}(2.5 \mathrm{~h} \text { each axis }) \end{aligned}$	Unit operating
Fda	Random vibration wide band Reproducibility high	IEC 60068-2-35 DIN 40046 part 23	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	$\begin{aligned} & 0.05 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-500 \mathrm{~Hz} \\ & 4.9 \text { grms } \\ & 3 \mathrm{~h}(1 \mathrm{~h} \text { each axis) } \end{aligned}$	Unit operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN/DIN 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	$5 \%\left(30^{\circ} \mathrm{C}\right)$ 2 h per cycle $40^{\circ} \mathrm{C}, 93 \%$ rel. humidity 22 h per cycle 3	Unit not operating

Table 7: Temperature specifications, valid for air pressure of 800-1200 hPa (800-1200 mbar)

Temperature			Standard -7		Option -9		Unit
Characteristics		Conditions	min	max	min	max	
$T_{\text {A }}$	Ambient temperature	Operational ${ }^{1}$	-25	71	-40	71	${ }^{\circ} \mathrm{C}$
$T_{\text {c }}$	Case temperature		-25	95	-40	95	
$T_{\text {S }}$	Storage temperature	Non operational	-40	100	-55	100	

${ }^{1}$ See Thermal Considerations

Table 8: MTBF and device hours

MTBF	Ground Benign	Ground Fixed		Ground Mobile	Device Hours ${ }^{1}$
MTBF acc. to MIL-HDBK-217F	$T_{\mathrm{C}}=40^{\circ} \mathrm{C}$	$T_{\mathrm{C}}=40^{\circ} \mathrm{C}$	$T_{\mathrm{C}}=70^{\circ} \mathrm{C}$	$T_{\mathrm{C}}=50^{\circ} \mathrm{C}$	
	$660^{\prime} 000$	$143^{\prime} 000 \mathrm{~h}$	$81^{\prime} 000 \mathrm{~h}$	$68^{\prime} 000 \mathrm{~h}$	$2^{\prime} 800^{\prime} 000 \mathrm{~h}$

${ }^{1}$ Statistical values, based on an average of 4300 working hours per year and in general field use

PSC Series Extended Data Sheet

Changing the Shape of Power

Mechanical Data

Dimensions in mm . Tolerances $\pm 0.3 \mathrm{~mm}$ unless otherwise specified.

Fig. 12
Case C02, weight 440 g Aluminium, black finish and self cooling

Safety and Installation Instructions

Installation Instruction

Installation of the switching regulators must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings and segregation requirements of the end-use application.
Check for hazardous voltages before altering any connections. Connections can be made using fast-on or soldering technique.

The input and the output circuit are not separated, i.e. the negative path is internally interconnected!
The units should be connected to a secondary circuit. Do not open the module.
Ensure that a unit failure (e.g. by an internal short-circuit) does not result in a hazardous condition. See also: Safety of operator accessible output circuit.

Cleaning Agents

In order to avoid possible damage, any penetration of cleaning fluids is to be prevented, since the power supplies are not hermetically sealed.

Protection Degree

The protection degree is IP 20.

Standards and Approvals

All switching regulators are UL recognized according to UL 1950, UL 1012 and EN 60950, UL recognized for Canada to CAN/CSA C22.2 No. 234-M90.
The units have been evaluated for:

- Building in,
- Operational insulation from input to output and input/output to case,
- The use in an overvoltage category II environment,
- The use in a pollution degree 2 environment.

The switching regulators are subject to manufacturing surveillance in accordance with the above mentioned UL and CSA and with ISO 9001 standards.

Isolation

Electric strength test voltage between input interconnected with output against case: 1500 VDC, 1 s.
This test is performed in the factory as routine test in accordance with EN50116, IEC/EN 60950 and UL 1950 and should not be repeated in the field. Power-One will not honour any guarantee claims resulting from electric strength field tests.

Safety of Operator Accessible Output Circuit

If the output circuit of a switching regulator is operator-accessible, it shall be an SELV circuit according to IEC/EN 60950 related safety standards.
The following table shows some possible installation configurations, compliance with which causes the output circuit of the switching regulator to be an SELV circuit according to IEC/EN 60950 up to a nominal output voltage of 30 V , or 48 V if option C is fitted.

However, it is the sole responsibility of the installer or user to assure the compliance with the relevant and applicable safety regulations.
More information is given in: Technical Information: Safety \& EMC.

Table 9: Insulation concept leading to an SELV output circuit

Conditions Front end				Switching regulator Measures to achieve the specified safety status of the output circuit	Result Safety status of the switching regulator output circuit
Supply voltage	Minimum required grade of isolation, to be provided by the AC-DC front end, including mains supplied battery charger	Maximum DC output voltage from the front end ${ }^{1}$	Minimum required safety status of the front end output circuit		
Battery supply, considered as secondary circuit	Double or Reinforced	≤ 60 V	SELV circuit	None	SELV circuit
		>60 V	Earthed hazardous voltage secondary circuit ${ }^{2}$	Input fuse ${ }^{3}$ and non accessible case ${ }^{5}$	Earthed SELV circuit
			Unearthed hazardous voltage secondary circuit ${ }^{5}$	Input fuse ${ }^{3}$ and unearthed, non accessible case ${ }^{5}$	Unearthed SELV circuit
			Hazardous voltage secondary circuit	Input fuse ${ }^{3}$ and earthed output circuit ${ }^{4}$ and non accessible case ${ }^{5}$	Earthed SELV circuit
Mains$\leq 250 \text { V AC }$	Basic	≤ 60 V	Earthed SELV circuit ${ }^{4}$	None	
			ELV circuit	Input fuse ${ }^{3}$ and earthed output circuit ${ }^{4}$ and non accessible case ${ }^{5}$	
		$>60 \mathrm{~V}$	Hazardous voltage secondary circuit		
	Double or reinforced	$\leq 60 \mathrm{~V}$	SELV circuit	None	SELV circuit
		$>60 \mathrm{~V}$	Double or reinforced insulated unearthed hazardous voltage secondary circuit ${ }^{5}$	Input fuse ${ }^{3}$ and unearthed and non accessible case ${ }^{5}$	Unearthed SELV circuit

${ }^{1}$ The front end output voltage should match the specified input voltage range of the switching regulator.
${ }^{2}$ The conductor to the Gi- terminal of the switching regulator has to be connected to earth by the installer according to the relevant safety standard, e.g. IEC/EN 60950.
${ }^{3}$ The installer shall provide an approved fuse (slow blow type with the lowest current rating suitable for the application, max. 12.5 A) in a non-earthed input conductor directly at the input of the switching regulator. If Vo+ is earthed, insert the fuse in the Gi- line. For UL's purpose, the fuse needs to be UL-listed. If option C is fitted, a suitable fuse is already built-in in the Vi+ line.
${ }^{4}$ The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950.
${ }^{5}$ Has to be insulated from earth by double or reinforced insulation according to the relevant safety standard, based on the maximum output voltage from the front end.

Description of Options

-9 Extended Temperature Range

The operational ambient temperature range is extended to $T_{\mathrm{A}}=-40$ to $71^{\circ} \mathrm{C}$. $\left(T_{\mathrm{C}}=-40\right.$ to $95^{\circ} \mathrm{C}, T_{\mathrm{S}}=-55$ to $100^{\circ} \mathrm{C}$.)

P Potentiometer

Option P excludes R function. The output voltage V_{0} can be adjusted with a screwdriver in the range from 0.92-1.08 of the nominal output voltage $V_{\text {o nom }}$.
However, the minimum differential voltage $\Delta V_{i o \text { min }}$ between input and output voltages as specified in: Electrical Input Data should be maintained.

L Input Filter

Option L is recommended to reduce superimposed interference voltages and to prevent oscillations, if input lines exceed approx. 5 m in total length. The fundamental wave (approx. 120 kHz) of the reduced interference voltage between $\mathrm{Vi}+$ and Gi - has, with an input line inductance of $5 \mu \mathrm{H}$, a maximum magnitude of 4 mV AC.
The input impedance of the switching regulator at 120 kHz is about 3.5Ω. The harmonics are small in comparison with the fundamental wave. See also: Electrical Input Data: RFI.
With option L, the maximum permissible additionally superimposed ripple u_{i} of the input voltage (rectifier mode) at a specified input frequency f_{i} has the following values:
$u_{i \max }=10 \mathrm{~V}_{\mathrm{pp}}$ at 100 Hz or $\mathrm{V}_{\mathrm{pp}}=1000 \mathrm{~Hz} / \mathrm{f}_{\mathrm{i}} \cdot 1 \mathrm{~V}$

C Crowbar

This option is recommended to protect the load against power supply malfunction, but it is not designed to sink external currents.
A fixed-value monitoring circuit checks the output voltage V_{0}. When the trigger voltage $V_{0 \mathrm{c}}$ is reached, the thyristor crowbar triggers and disables the output. It may be deactivated by removal of the input voltage. In case of a switching transistor defect, an internal fuse prevents excessive current.
Note: As a central overvoltage protection device, the crowbar is usually connected to the external load via distributed inductance of the lines. For this reason, the overvoltage at the load can temporarily exceed the trigger voltage $V_{\text {oc }}$. Depending on the application, further decentralized overvoltage protection elements may have to be used additionally. For further information see: Technical Information: Application Notes.

D Save Data Input Undervoltage Monitor
Note: Output instead of input undervoltage monitor is available on request (Option D1).
Terminal D and Go- are connected to a normally conducting field effect transistor (JFET). The switching characteristics of the option D output are shown in fig. Definition of V_{t} and V_{H}. A 0.5 W Zener diode provides protection against overvoltages.
The voltage V_{t} can be externally adjusted with a trim potentiometer by means of a screwdriver. The hysteresis V_{H} of V_{t} is $<2 \%$. Terminal D stays low for a minimum time $t_{\text {low min }}$, in order to prevent any oscillation. V_{t} can be set to a value between $V_{\mathrm{i} \text { min }}$ and $V_{\mathrm{i} \text { max }}$. Please note that the JFET becomes conductive when V_{D} increases above 7 V approx.

Fig. 13
Test circuit with definition of voltage V_{D} and current I_{D}

Fig. 14
Definition of V_{t} and V_{H}

Table 10: Crowbar trigger levels

Characteristics		Conditions	12 V		15 V		24 V		36 V		48 V		Unit
			min	max									
$V_{\text {oc }}$	Trigger voltage	$\begin{aligned} & V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }} \\ & I_{\mathrm{O}}=0-I_{\mathrm{onom}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	13.5	16	16.5	19	27	31	40	45.5	55	60	V
$t_{\text {s }}$	Delay time			1.5		1.5		1.5		1.5		1.5	$\mu \mathrm{s}$

Data

Table 11: Option D data

Characteristics		Conditions	PSC			Unit	
		min	typ	max			
$V_{\text {D low }}$	Voltage - Terminal D at low impedance		$V_{\mathrm{i}}<V_{\mathrm{t}}, I_{\mathrm{D}}-2.5 \mathrm{~mA}$			0.8	V
$V_{\text {D } \text { high }}$	Voltage - Terminal D at high impedance	$V_{\mathrm{i}}>V_{\mathrm{t}}+V_{\mathrm{H}}, I_{\mathrm{D}}>25 \mu \mathrm{~A}$	4.75				
$t_{\text {low min }}$	Minimum duration $V_{\text {D Iow }}$			30		ms	
$t_{\text {Df }}$	Response time to $V_{\text {D low }}$			1		$\mu \mathrm{s}$	
$I_{\text {D max }}$	Maximum current - Terminal D				20	mA	

Application examples:
a) The signal V_{D} can be utilized in battery powered systems to provide a warning in case of low batteries.
b) In case of power failure, the signal can serve to initiate data save routines.

Accessories

A variety of electrical and mechanical accessories are available including:

- PCB-tags and isolation pads for easy and safe PCBmounting.
- Ring core chockes for ripple and interference reduction. For more detailed information please refer to: Accessories on the Power-One homepage.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

EC Declaration of Conformity

We
 Power-One AG
 Ackerstrasse 56 CH-8610 Uster

declare under our sole responsibility that all PSx Series switching regulators carrying the CE-mark are in conformity with the provisions of the Low Voltage Directive (LVD) 73/23/ EEC of the European Communities.

Conformity with the directive is presumed by conformity wih the following harmonized standards:

- EN 61204: 1995 (= IEC 61204: 1993, modified)

Low-voltage power supply devices, d.c. output - Perfomance characteristics and safety requirements

- EN 60950: 1992 + A1: 1993 + A2 (= IEC 950 second edition 1991 + A1: 1992 + A2: 1993)
Safety of information technology equipment

The installation instructions given in the corresponding data sheet describe correct installation leading to the presumption of conformity of the end product with the LVD. All PSx Series Switching Regulators are components, intended exclusively for inclusion within other equipment by an industrial assembly operation or by professional installers. They must not be operated as stand alone products.

Hence conformity with the Electromagnetic Compatibility Directive 89/336/EEC (EMC Directive) needs not to be declared. Nevertheless, guidance is provided in most product application notes on how conformity of the end product with the indicated EMC standards under the responsibility of the installer can be achieved, from which conformity with the EMC directive can be presumed.

Uster, 14 Oct. 2003
Power-One AG

Rolf Baldauf
Director Engineering

Director Projects and IP

