

CS6652/54

Multi-stream MPEG-2 Video Decoders

The CS6652/CS6654 MPEG-2 multi-stream video decoders provide high performance solutions for applications requiring simultaneous real-time decoding and display of multiple video streams. The CS6652 and CS6654 provide up to 2 and 4 MPEG-2 MP@ML or 4:2:2P@ML video elementary streams respectively. These high performance application specific cores can be configured to decode a single video elementary stream up to MP@HL or 4:2:2P@HL as well as a single ISO/IEC11172-2 (MPEG-1) constrained parameter bitstream. The CS6652 and CS6654 have been handcrafted by Amphion to deliver high performance while minimizing power consumption and silicon area for ASICs.

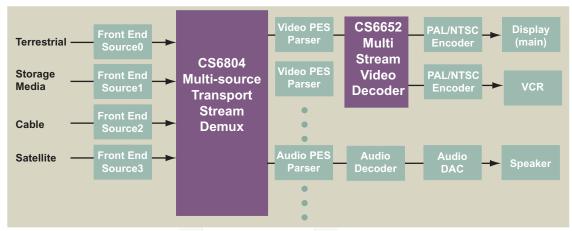


Figure 1: Example Set Top Box Using CS6652 for Simultaneous Display and VCR Recording of Different Programs

FEATURES

- ISO/IEC 13818-2 (H.262) compliant
 - Supports MP@ML to 4:2:2P@HL
- High performance solution for high data rate MPEG-2 decoding
 - Supports input bit rates up to 300 Mbps
 - Real time decode and display of 2 or 4 streams of up to 4:2:2P@ML or a single stream of up to 4:2:2P@HL
- Supports all ATSC and HDTV defined resolutions and frame rates
- ♦ Supports progressive and interlaced scan
- Supports intra slice refresh
- Bitstream error detection and recovery
- Glueless interface to external SDRAM
- Capable of standalone or host controlled operation
- Fully Synchronous design with host shutdown and restart control
- ♦ Ease of integration
 - Simple core interface for easy integration into larger systems.

KEY METRICS¹

Logic area: 89.5K Gates

Memory: 11.75K Bits RAM

Maximum clock: 133 MHz

APPLICATIONS

- DVB-T, DVB-S or DVB-C set-top-box/integrated receiver decoders
- Digital cable and satellite set-top decoder box for ATSC HDTV
- ♦ DVD Video Standard and High Definition
- Studio 4:2:2 chrominance format editing or production
- Picture-in-picture or simultaneous viewing of 2, 3, or 4 channels
- ♦ PC video hardware acceleration
- Simultaneous display or recording of 2 or more channels

BENEFITS

- Highly parallel architecture provides cost efficient approach for compute intensive video decoding
- Simplifies system architecture to reduce overall HW/SW coverification period
- ♦ Low power to help minimize packaging cost

^{1.} This information is for CS6652-Lite core which is a reduced gate count version not including the SDRAM memory controller and display DMA. For more information please refer to Table 3 & 4.

CS6652/CS6654 MPEG-2 MULTISTREAM VIDEO DECODERS

Table 1 Defines MPEG-2 profiles and levels supported by the CS6652 & CS6654 MPEG-2 multistream video decoders.

Table 1: MPEG-2 Profiles and Levels Supported by CS6652/54 Cores

Level	Profile	Simple	Main	4:2:2	
High	Samples/line Lines/frame Frames/sec Max. luma samples rate		1920x 1088x 60 62668800	1920x 1088x 60 62668800	
High 1440	Samples/line Lines/frame Frames/sec Max. luma samples rate		1440x 1088x 60 47001600		
Main	Samples/line Lines/frame Frames/sec Max. luma samples rate	720x 576x 30 10368000	720x 576x 30 10368000	720x 608x 30 11059200	

Multistream Mode

Single stream Mode

The CS6652/CS6654 cores accept video elementary streams as input from conditional access decryption, transport stream demux, or similar sources. These streams are input on a bytewide port with handshake flow control signals, allowing a maximum overall average input bitrate of 300Mbits/sec. The cores can operate in a default mode on input streams without the intervention of a host processor. In this mode pictures will be decoded from the video streams and output in correct display order. The host processor has access to a full range of information for each input stream and can control the behavior of the decoder to permit audio/video synchronization, pan-scan, letterbox conversion, and various trick modes. The output from the cores is provided by highly configurable display DMA (Direct Memory Access) engine. This allows adjustable output video component sequencing for each input stream and provides external logic with control over the display of the picture. To meet the high bandwidth requirements of the simultaneous decoding and display of up to four 4:2:2P@ML elementary streams (or a single 4:2:2P@HL elementary stream), a bank of two SDRAM chips is used. These SDRAM chips are commodity 64Mbit PC133 SDRAMs in 2Mx32 configuration.

CS6652/CS6654 SYMBOL AND PIN DESCRIPTION

Table 2 gives the descriptions of the input and output ports (shown graphically in Figure 2) of the CS6652 MPEG-2 multistream video decoder. Unless otherwise stated, all signals are active high and bit(0) is the least significant bit.

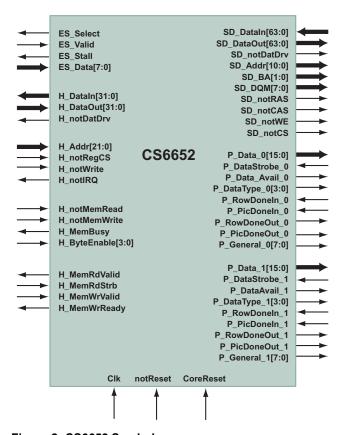
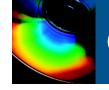



Figure 2: CS6652 Symbol

Table 2: CS6652/54 Interface Signal Definitions

Signal	Width	I/O	Description			
Global Signals						
Clk	1	Input	Core clock Master clock used for all logic and the external SDRAM interface. This clock should also be routed to the external SDRAM chips. The clock is 133MHz			
notReset	1	Input	Core reset Asynchronous, active low global core reset.			
CoreReset	1	Input	Core reset Synchronous, active high core reset.			
Elementary Stream	Elementary Stream Input Interface					
ES_Data	8	Input	Elementary Stream Data, byte aligned video elementary stream bytes from the Conditional Access decryption core or transport stream demux. Maximum average input bit rate is 300Mbits/s			
ES_Valid	1	Input	Data Valid Strobe, <i>ES_Data</i> is latched on the positive edge of <i>Clk</i> when <i>ES_Valid</i> is asserted and <i>ES_Stall</i> is not asserted.			
ES_Stall	1	Output	Data Stall, input data may be burst into the core at a rate higher than the specified maximum 300Mbits/s. In this case the core will indicate that it temporarily cannot receive any more data by assertion of <i>ES_Stall</i> . <i>ES_Data</i> and <i>ES_Valid</i> will be ignored while <i>ES_Stall</i> is asserted.			
ES_Select	1 or 2	Output	Elementary Stream Select, either a 1-bit (CS6652) or 2-bit (CS6654) signal representing the number of the elementary stream which the core is currently accepting and decoding via <i>ES_Data</i> . This signal may be used to drive a mux to switch the correct elementary stream into the core when selected.			

Table 2: CS6652/54 Interface Signal Definitions

Signal	Width	I/O	Description			
Picture Output Interface (One per elementary stream)						
P_Data	16	Output	Picture Output Data, from the display DMA. Contains either Y, Cr or Cb, as indicated by <i>P_DataType</i> . In 16-bit mode the upper 8 bits carry Y and the lower 8 bits carry either Cr or Cb as indicated by P_DataType.			
P_DataStrobe	1	Input	Data Taken Strobe, indicates that the external logic will consume the current <i>P_Data</i> of the next positive edge of <i>Clk</i> . The signal is also used as a qualifier for the <i>P_RowDoneIn</i> and <i>P_PicDoneIn</i> signals.			
P_DataAvail	1	Output	Data Valid Signal, indicates that the DMA engine has been configured and is running and <i>P_Data</i> carries a valid picture sample.			
P_DataType	4	Output	Picture Data Type, indicates the type of sample on P_Data . The bottom two bits carry the component identification as follows: $00 = Y_1$ $01 = Y_2$ $10 = Cb$ $11 = Cr$. The top two bits carry display frame/field information as follows: $00 = progressive$ $01 = undefined$ $10 = top field$ $11 = bottom field$.			
P_RowDoneIn	1	Input	Last Pixel in Row, used to terminate a row scan and move on to the next. This may be used with pan and scale external logic. This input is ignored in certain DMA configurations. Should be asserted for the last byte of the pixel sample group – the engine will stop after the last component for the group is taken.			
P_PicDoneIn	1	Input	Last Pixel in Picture, indicates that the display of the picture is complete at the end of the current pixel. The engine will revert to idle mode. This input is ignored in certain DMA configurations. Should be asserted for the last byte of the pixel sample group – the engine will stop after the last component for the group is taken.			
P_RowDoneOut	1	Output	Last Pixel in Row, This output can be programmed to indicate the last component of the last pixel of the row. This requires the correct configuration of the DMA engine row length register.			
P_PicDoneOut	1	Output	Last Pixel in Picture, This output can be programmed to indicate the last component of the last pixel of the picture. This requires the correct configuration of the DMA engine row and column length registers.			
P_General	8	Output	General Outputs, These outputs directly reflect the programmed value in the DMA general Output register. They can be used by the host CPU to inform the display logic of specific display parameters such as PAL/NTSC encoding information etc.			
Frame Store Interfa	ace					
SD_DataIn	64	Input	SDRAM Data Input, read data input from external SDRAM.			
SD_DataOut	64	Output	SDRAM Data Output, write data output to external SDRAM.			
SD_notDatDrv	1	Output	SDRAM Data Drive, active LOW enable signal for SDRAM data bus tristate drivers. Driven low when <i>SD_DataOut</i> should be placed on the bus.			
SD_Addr	11	Output	SDRAM Address bus, carries row or column addresses or commands to the external SDRAM.			
SD_BA	2	Output	SD_BA, indicates selected bank for the current SDRAM command.			
SD_DQM	8	Output	SDRAM DQ Mode, used to control burst transfers of data to/from the SDRAM.			
SD_notRAS	1	Output	SDRAM Row Address Strobe, strobes a row address or command into the SDRAM.			
SD_notCAS	1	Output	SDRAM Column Address Strobe, strobes a column address or command into the SDRAM.			
SD_notWE	1	Output	SDRAM Write Enable, indicates to the SDRAM that a write command is required.			
SD_notCS	1	Output	SDRAM Chip Select, active except for reset.			

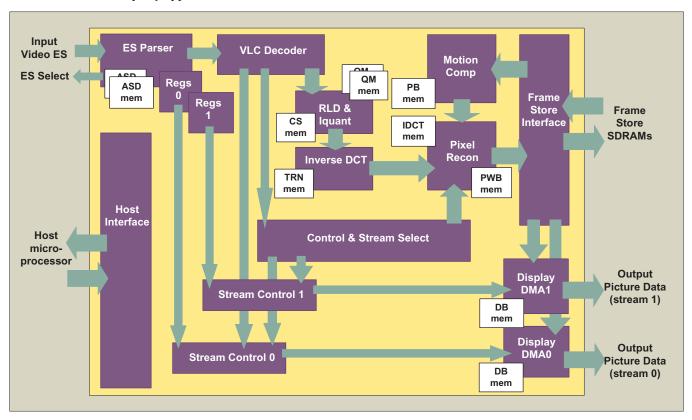


Table 2: CS6652/54 Interface Signal Definitions

Signal	Width	I/O	Description		
Host Interface					
H_DataIn	32	Input	Host Data Input, host write data into the core.		
H_DataOut	32	Output	Host Data Output, host read data from the core. This pipelined output reflects the value of the register selected by H_Addr .		
H_notDatDrv	1	Output	Host Data Drive, indicates that a read is active. This can be used to control external tristate drivers if required. Active LOW.		
H_Addr	22	Input	Host Address, used to select a register for read/write, or a frame store SDRAM word to be accessed.		
H_notRegCS	1	Input	Host Chip Select, active LOW enable signal controls all host register accesses.		
H_notWrite	1	Input	Host Write Select, indicates that when $H_notRegCS$ is asserted, the register addressed by H_Addr will have the value on H_Dataln assigned to it on the rising edge of the Clk signal, if the appropriate byte write enable signal is also asserted. If it is de-asserted when $H_notRegCS$ is asserted then a register read is initiated and $H_DataOut$ will show the selected register's data on the next tick.		
H_notIRQ	1	Output	Host Interrupt Request, active LOW output asserted when an interrupt condition is present and enabled.		
H_ByteEnable	4	Input	Host Byte Write Enables, used on write accesses to control which bytes in a register or SDRAM word actually get written.		
H_notMemRead	1	Input	Host memory Read Access, initiates an SDRAM host read transaction.		
H_notMemWrite	1	Input	Host Memory Write Access, initiates an SDRAM host write transaction.		
H_MemBusy	1	Output	Host Memory Interface Busy, indicates that a memory access transaction is in progress. This can be used to insert read wait states and to stall for posted writes to complete.		
H_MemRdValid	1	Output	Host Memory Read Data Valid, indicates that the read data is available on the $H_DataOut$ port.		
H_MemRdStrb	1	Input	Host Memory Read Data Strobe, indicates that the host will consume the data from the $H_DataOut$ port on the next positive edge of Clk .		
H_MemWrValid	1	Input	Host Memory Write Data Valid, indicates that the host has placed valid write data on the H_DataIn port. Note that $H_ByteEnabIe$ should be valid at the same time as the data.		
H_MemWrReady	1	Output	Host Memory Write Data Ready, indicates that the core is ready to consume the data on <i>H_DataIn</i> on the positive edge of <i>Clk</i> when it is signalled as valid with <i>H_MemWrValid</i> .		

CS6652/CS6654 FUNCTIONAL DESCRIPTION

Figure 3 represents a block diagram of the main functional blocks in the CS6652. This is followed by a high-level description of these blocks, which is equally applicable to the CS6654.

ASD mem - Additional Stream Data memories

CS mem - Convert Scan memory

QM mem - Quantization matrix memories

TRN mem
 PB mem
 Prediction Buffer memory
 IDCT coefficient memory
 PWB mem
 Pixel Write-back memory
 Display Line-Buffer memory

Figure 3: CS6652 Multi-stream MPEG-2 Video Decoder Block Diagram Showing Memory Blocks

STREAMSELECT: ELEMENTARY STREAM SWITCHING AND SELECTION

This controls switching between input elementary streams and the selection of the correct parameters for a particular stream, when the decoding of that stream is in progress. In multi-stream mode switching from decoding one elementary stream to another is done at the slice layer, specifically at the end of a macroblock row. In MPEG-2 video the start and end of a row of macroblocks always corresponds with the start and end of a slice, although a macroblock row may contain more than one slice. Within a slice various macroblock data is coded differentially between the macroblocks (e.g. DC DCT coefficient, motion vectors). This means that the slice provides a carefully encapsulated group of data, at the end of which

switching from one stream to another can be done with a minimal requirement to store state, base and incremental values of macroblock parameters.

Switching from decoding one stream to another is only done when the last slice of the macroblock row has been decoded. Therefore, each elementary stream is decoded one macroblock row at a time, rather than simply slice by slice. This prevents streams with a longer slice structure from monopolizing the decoder. Switching at the slice layer necessitates the storage of state variables in both the Video Stream Parser and VLC Decoder, as well as the replication of various input buffers and FIFOs for each elementary stream.

STREAMDECODE: FROM STREAM DECODING TO INVERSE DCT

Elementary Stream Interface

This interface accepts elementary stream data through the byte wide ES_Data port. If the core temporarily cannot receive any further data, or is switching from one elementary stream to another ES_Stall is asserted. In the CS6652 or CS6654 the ES_Select output is either a single or 2-bit signal, respectively, representing the number of the elementary stream that the core is currently accepting and decoding via ES_Data. This signal may be used to drive a multiplexer to switch the correct elementary stream into the core when selected.

Video Stream Parser

VLC Decoder

The VLC Decoder block decodes the Huffman-style variable length encoded picture data. At the macroblock layer the outputs of VLC Decoder include:

- DCT block run-level information
- Decoded motion vectors for motion compensation
- A number of information fields describing the section of the picture currently being decoded.

The registers used to store stream parameters are replicated as necessary for each multistream pipeline in the core.

Run-Level Decoding and Inverse Quantization

The output run-level information from the VLC decoder is converted into complete blocks of 64 quantized DCT coefficients by the Run-Level Decoder. These DCT coefficients are encoded in Zigzag or Alternate Scan order and are converted to natural row order using the Convert Scan (CS) memory before dequantization. Custom quantization matrices can be used in the encoding of MPEG video. These are sent as part of the header information in the stream and are stored in the Quantization Matrix (QM) memory. The dequantized DCT blocks are then passed to the Inverse DCT unit.

Inverse DCT

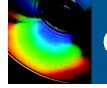
This high performance unit performs the inverse transform of the 8x8 DCT Y, Cr and Cb sample blocks. It is capable of streaming data through continuously transforming an entire block of 8x8 DCT coefficients into an 8x8 block of (IDCT) samples or sample prediction error corrections in every 64 clock cycles.

PICRECON: MOTION COMPENSATION AND PICTURE RECONSTRUCTION

Motion Compensation Unit

For each macroblock in a P- or B-picture the motion compensation unit takes the decoded motion vectors from the VLC Decoder and translates them into row and column coordinates for the prediction samples in the reference picture. The pixels at those co-ordinates are then requested from the Memory System frame store interface. When the requested samples are received they are combined with other (forward/backward/dual prime) samples for the same block to complete the prediction for the macroblock.

Picture Reconstruction


In this block the final motion compensation prediction samples are merged with the sample prediction error corrections from the Inverse DCT unit to form the final reconstructed samples for the macroblock. They are then stored in the pixel write-back buffer before being written to the frame store. In the case of intra macroblocks there are no prediction samples to add and the output IDCT samples are written back to the frame store without any further processing.

STREAMCONTROL: FRAME BUFFER TRACKING AND DISPLAY CONTROL

There is one StreamControl block for each input elementary stream. This block is responsible for controlling the decoding process, reordering, and queuing of pictures for display, for its designated elementary stream. This task involves the tracking of the contents of the frame store. For multistream operation the SDRAM is divided into 2 or 4 separate frame stores in the CS6652 and CS6654, respectively. The StreamControl block keeps track of frame buffers and off loads them for reuse once the frames they contain are no longer required for either reference or display.

MEMSYS: SDRAM FRAME STORE INTERFACE

The Frame Store is implemented using two SDRAM chips, which are commodity PC133 64Mbit parts, each with 2Mx32 organization. The memory interface runs at 133 MHz and can be directly connected to the SDRAM chips using suitable pads. MemSys handles the mapping of pixel read and write requests for motion compensation, reconstructed pixel writeback, and display into linear memory addresses. Additionally, the host interface can access the memory banks. Arbitration between the various accessing units and memory transaction queues are all maintained by this module.

DMA: PICTURE DISPLAY DMA (ONE PER ELEMENTARY STREAM)

The picture display DMA has a double-byte output interface that can carry Y, Cr or Cb pixel data. Y and Cr or Cb data can be output simultaneously as 16-bit wide composite values or sequentially as four separate bytes. For 4:2:0 chrominance format video streams the Picture Display DMA will upsample the chrominance vertically to provide a 4:2:2 output. The Display DMA engine can be configured by the host CPU via the Host Interface to display only a particular portion of the decoded picture, or in stand-alone mode, the entire coded picture. A number of handshake signals are provided on the Picture Display DMA interface. These signals allow external logic to control the timing of the pixel output stream and control the end of the current scan row or picture display. Outputs indicate the nature of the pixel being currently driven to the external logic. Also, end of row and end of picture flags allow the sync pulse generation.

HOSTINTERFACE: CONFIGURATION AND CONTROL

When the CS6652 or CS6654 is running with the assistance of a host CPU, a number of additional features can be accessed. All of the interfacing between the host and the CS6652 or CS6654 is performed through the HostInterface. This allows the read/write access to all the internal control, status and video stream parameter registers (for each stream) within the decoder. The HostInterface also provides a simple 32-bit read/write access to the SDRAM Frame Store. Normally, the areas of the SDRAM used for storage of picture data cannot be accessed by the HostInterface; however, a bypass mode allowing direct access is provided for system diagnostic tests etc. An interrupt request is also included on the HostInterface.

AVAILABILITY AND IMPLEMENTATION INFORMATION

ASIC CORES

For applications that require the high performance, low cost and high integration of an ASIC, Amphion delivers application specific silicon cores that are pre-optimized to a targeted silicon technology by Amphion experts.

Consult your local Amphion representative for product specific performance information, current availability of individual products, and lead times on ASIC core porting.

Table 3: CS6652 Core Using TSMC Standard Cell Libraries

Product ID #	Process Technology	Supported Profile and Level	Clock Speed (MHz)	Logic* Gates	Memory (RAM)	Availability
CS6652TM Lite**	130 nm	2x MP@ML 1x MP@HL	133	9.75K	9.75KBits	Now
CS6652TM	130 nm	2x 4:2:2P@ML 1x 4:2:2P@HL	133	111.5K	19.75KBits	Now

Table 4: CS6654 Core Using TSMC Standard Cell Libraries

Product ID #	Process Technology	Supported Profile and Level	Clock Speed (MHz)	Logic* Gates	Memory (RAM)	Availability
CS6654TM Lite**	130 nm	4x MP@ML 1x MP@HL	133	106K	11.75KBits	Now
CS6654TM	130 nm	4x 4:2:2P@ML 1x 4:2:2P@HL	133	127K	31.75KBits	Now

^{*} Logic gates do not include clock circuitry

^{**} Reduced address mapped register set. Does not include SDRAM memory controller or display DMA

ABOUT AMPHION

Amphion (formerly Integrated Silicon Systems) is the leading supplier of speech coding, video/image processing and channel coding application specific silicon cores for system-on-a-chip (SoC) solutions in the broadband, wireless, and mulitmedia markets

Web: www.amphion.com
Email: info@amphion.com

CORPORATE HEADQUARTERS

Amphion Semiconductor Ltd 50 Malone Road Belfast BT9 5BS Northern Ireland, UK

Tel: +44 28 9050 4000 Fax: +44 28 9050 4001

EUROPEAN SALES

Amphion Semiconductor Ltd CBXII, West Wing 382-390 Midsummer Boulevard Central Milton Keynes MK9 2RG England, UK

Tel: +44 1908 847109 Fax: +44 1908 847580

WORLDWIDE SALES & MARKETING

Amphion Semiconductor, Inc 2001 Gateway Place, Suite 130W San Jose, CA 95110

Tel: (408) 441 1248 Fax: (408) 441 1239

CANADA & EAST COAST US SALES

Amphion Semiconductor, Inc Montreal Ouebec

Tel: (450) 455 5544 Fax: (450) 455 5543

Canada

SALES AGENTS

Phoenix Technologies Ltd

3 Gavish Street Kfar-Saba, 44424 Israel

Tel: +972 9 7644 800 Fax: +972 9 7644 801

SPINNAKER SYSTEMS INC

Hatchobori SF Bldg. 5F 3-12-8 Hatchobori, Chuo-ku Tokyo 104-0033 Japan

Tel: +81 3 3551 2275 Fax: +81 3 3351 2614 Voyageur Technical Sales Inc

1 Rue Holiday Tour Est, Suite 501 Point Claire, Quebec Canada H9R 5N3

Tel: (514) 693 5009 Fax: (514) 693 5007

SPS-DA PTE LTD

21 Science Park Rd #03-19 The Aquarius Singapore Science Park II Singapore 117628

Tel: +65 774 9070 Fax: +65 774 9071

JASONTECH, INC

Hansang Building, Suite 300 Bangyidong 181-3, Songpaku Seoul Korea 138-050

Tel: +82 2 420 6700 Fax: +82 2 420 8600

© 2002 Amphion Semiconductor Ltd. All rights reserved.

Amphion, the Amphion logo, "Virtual Components for the Converging World", are trademarks of Amphion Semiconductor Ltd. All others are the property of their respective owners.