50mA F to V Converter

Description

The CS-2907/2917 Series is designed for use in frequency-to-voltage conversion systems and is especially suitable for tachometer and motor-speed-control applications. The 2907 consists of a regenerative input comparator, a frequency doubling charge pump and a general purpose, differential op-amp output. The 2917 has the additional built-in feature of an internal shunt voltage regulator. The input signal, which can be single-ended, or differential, is applied to the regenerative comparator input; 30mV hysteresis provides noise rejection.

The frequency-doubling charge pump is triggered by the comparator output, converting the input-frequency information into a d.c. output voltage at F/V_{OUT} . The output op-amp is unitygain compensated and can serve as an output-voltage follower or as an active filter for additional ripple reduction. 50mA current capability allows the output stage to drive a variety of loads either from emitter, or collector.

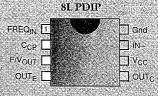
The output swings to ground for zero frequency input.

Absolute Maximum Ratings

Supply Voltage	28V
Supply Current	25mA
Op. Amp./Comp. Differential Input Voltage	28V
Op. Amp./Comparator Input Voltage	
Op. Amp. Collector-Emitter Voltage	
Digital Interface Collector-Emitter Voltage	
Operating Temperature Range	
Storage Temperature Range	
Lead Temperature Soldering	

Block Diagram

Wave Solder(through hole styles only).......10 sec. max, 260°C peak


Features

- Buffered High-Level Frequency Output
- Single-ended or Differential Inputs
- Filter Output Capability

 Output Swings to Ground
 for Zero Frequency Input

Voltage Follower or Active

Package Options

14L PDIP

OUTE INNC VCC
NC OUTC

	al Characteristics: T _A = 25°C				, s 1 11	
PARAMETER	TEST CONDITION:	5	MIN	TYP	MAX	U
Comparator	<u> </u>					
Input Threshold Voltage	$V_{FREQIN} = \pm 125 \text{mV}$	note 2	±10	±15	±40	n
Hysteresis	$V_{\text{FREQIN}} = \pm 125 \text{mV}$	note 2	i Karasi wa	30		n
Input Offset Voltage	_					
-D14 Versions	note 2			3.5	10	n
-D8 Versions Input Bias Current	note 2 V _{FREQIN} = ±50mV		1 00000000000	5 0.1	15 1.0	n u
Common Mode Voltage	** FREGIN = Tours	ilbarok 1			V _{CC} - 1.5	Za Paranta
					, ((2	
Charge Pump						
Output Voltage - high, V _{OH}						
CS-2907 Series	$V_{\text{FREQIN}} = +125 \text{mV}_{\text{DC}}$	note 3		8.3	•	V
CS-2917 Series	$V_{FREQIN} = +125 \text{mV}_{DC}$	note 3	no kinimadakana manamana	5		V
Output Voltage - low, V _{OL}						
CS-2907 Series	$V_{\text{FREQIN}} = -125 \text{mV}_{\text{DC}}$	note 3		2.3		V
CS-2917 Series	$V_{\text{FREQIN}} = -125 \text{mV}_{\text{DC}}$	note 3		1.2		i EX
Output Current Ipin 2, Ipin 3 CS-2907 Series	$V_{CCP} = VF/V_{OUT} = 6V_{DC}$	note 4	140	180	240	
CS-2917 Series	$V_{CCP} = V_F/V_{OUT} = 3.5V_{DC}$ $V_{CCP} = V_F/V_{OUT} = 3.5V_{DC}$		120	160	250	μ μ
CD-2717 Deffes	$V_{CC} = 6V_{DC}$	11016 4	120	100 .	250	μ
Leakage Current Ipin 3	$I_{CCP} = 0; V_F/V_{OUT} = 0$		1000000000		0.1	l lin
Gain Constant K	note 3		0.9	1.0	1.1	
Non-Linearity	note 5		-1.0	±0,3	+1.0	%
Op. Amp.	. Dataoi		G			
Input Offset Voltage						
CS-2907 Series	$V_{IN} = 6V_{DC}$			3	10	m
CS-2917 Series	$V_{IN} = 3.5V_{DC}$			3	10	m
Input Bias Current			W. PROPERTY		The Section	e ees
CS-2907 Series	$V_{IN} = 6V_{DC}$			0.05	0.5	i i
CS-2917 Series	$V_{IN} = 3.5V_{DC}$	4.466		0.05	0.5.	μ
Common Mode Voltage			0		V _{CC} - 1.5	· V
Open Loop Gain				200		v
I _{SINK}	V _{OUTC} = 1V	NATIONAL CONTRACTOR OF THE PARTY OF THE PART	40	50	v. Shanakan omena asanan	m
I _{SOURCE}						150
CS-2907 Series	$V_{\text{OUTE}} = V_{\text{CC}} - 2V$			10		m
CS-2917 Series	$V_{\text{OUTE}} = V_{\text{CC}} - 2V; V_{\text{CC}} = 6V$	DC		10		, m
Saturation Voltage	$I_{SINK} = 5mA$			0.1	0.5	V
	$I_{SINK} = 20 \text{mA}$				1.0	V
	$I_{SINK} = 50 \text{mA}$			1.0	1.5	V
Zener Regulator (CS-2917 Se	ries Only)					
Regulator Voltage	Dropping Resistor = 470Ω			7.56		V
Series Resistance				10.5	15	Ω
Temperature Stability			-	+1		mV
Supply						
Current, Quiescent						
CS-2907 Series	$V_{CC} = 12V_{DC}$.3.8	6.0	m

Electrical Characteristics: continued

Notes:

- 1. Above 25° Derate at 8.0mW/°C for package D₁₄ and at 10.0mW/°C for package D₈.
- 2. Hysteresis is the sum +VTH-(VTH), offset voltage is their difference. 3. V_{OH} is equal to $3/4 \times V_{CC} - 1V_{BE}$, V_{OL} is equal to $1/4 \times V_{CC} - 1$ V_{BE} therefore $V_{OH} - V_{OL} = V_{CC}/2$. The difference, $V_{OH} - V_{OL}$, and

the mirror gain, 12/13, are the two factors that cause the tachometer gain constant to vary from 1.0.

- 4. Be sure when choosing the time constant $R_1 \times C_1$ that R_1 is such that the maximum anticipated output voltage at F/V_{OUT} can be reached with $I_3 \times R_1$. The maximum value for R_1 is limited by the output resistance of F/V_{OUT} which is greater than $10M\Omega$ typ.
- 5. Nonlinearity is defined as the deviation of V_{OUT} (@ F/V_{OUT}) for f_{IN} = 5kHz from a straight line defined by the V_{OUT} @ 1kHz and V_{OUT} @ 10kHz, $C_1 = 1000 pF$, $R_1 = 68 k\Omega$ and $C_2 = 0.22 \mu F$.

	PACKAG	GE PIN#		PIN SYMBOL	FUNCTION
8L P CS-2907		14L F CS-2907	PDIP CS-2917	THIOTHIOL	TONCTION
1	1	1	1	FREQ _{IN}	Analog input signal from speed sensor.
		11	11	COMP-	Inverted input to comparator; connected to Gnd in D8.
2	2	2	2	C_{CP}	Charge pump capacitor.
3	3	3 7	3	F/V _{OUT}	Charge pump output, the charge on the capacitor is measured at the output.
4	4	5	5	OUT_E	Emitter of op amp's output stage.
5	5	8	8	OUT _C	Collector of op amp's output stage.
6	6	9	9	V_{CC}	Supply voltage.
	$\mathcal{M}\mathcal{M}$	4	4	IN+II 🗎 🗀	Positive input to op amp.
7	7	10	10	IN-	Negative input to op amp.
	Kengeria.	6, 7, 13, 14	6, 7, 13, 14	NC	No connection.
8	8	12	12	Gnd	Ground connection.

Applications

A timing capacitor CCP, an output resistor RF, and an output filter capacitor C_F , are required as shown in Figure 1. On each transition of the input comparator, Cp is linearly charged or discharged between voltage limits V_H and V_I. The difference, V_H - V_I , equals V_{CC} /2. During one half

cycle of input frequency, the change in charge on CCP is: $C_{CP} V_{CC}/2$. The average charge-pump current charging C_{CP} during one half cycle of input frequency = C_{CP} V_{CC}

 F_{IN} where F_{IN} = input frequency. This charge pump cur-

rent, IC, is accurately mirrored into RF to generate a DC voltage at F/V_{OUT} such that $V_F/V_{OUT} = I_C R_F = K R_F C_{CP}$ V_{CC} F_{IN} where K is a circuit constant typically equal to

one. Averaging, or filtering is accomplished with CF and both output ripple voltage and response time are dependent on the value of Cp Peak to peak ripple voltage VR = $(V_{CC}/2) (C_{CP}/C_F) (1-F_{IN}/F_{max})$ where $F_{max} = 12/(C_{CP}/C_F)$

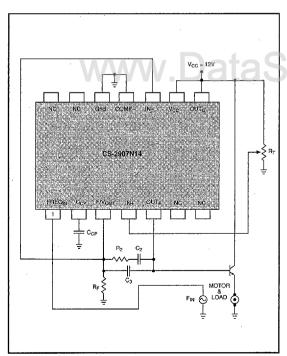
be chosen such that V_F/V_{OUT} max. = $I_F/V_{OUT}R_F$. Vcc Gnd COMP-CS-2907/2917 (D.C.) VOUT

seen at F/V_{OUT}, linearity will be adversely affected. Since

the current at F/V_{OUT}, I_F/V_{OUT}, is internally set, R_F must

Figure 1: Application Diagram WWW.DataSheet4U.com

 V_{CC}) and I_F is the current in C_F . For the 2917 series on-board shunt-regulator an external resistor R₂ is required for operation from the input supply voltage.


The value of R_F does not therefore affect ripple; however if it is too large by comparison with the output impedance

The CS-2917 F-to-V converter integrated circuit, with built-in operational amplifier, regulator, and output transistor is ideal for tachometer feedback motor speed control applications. Two typical application circuits are shown in Figure 2. Figure 2A employs the CS-2907-N14 operating from the V_{CC} line. Figure 2B offers an alternative approach using the CS-2917-N8 operating from the V_{CC} line and using the internal regulator. In both circuits, the tachometer feedback-signal is applied to the comparator input, and the F-to-V conversion gain is set by C_{CP}R_F. The general purpose op amp is used both as a summing node for the speed reference input (from potentiometer R_T), and as a frequency compensated integrator which provides zero steady state speed error under varying load

conditions. Capacitors C2 and C3 provide the integrating function at low frequency while R2 and C2 provide the frequency compensation which insures loop stability. In Figure 2A, the on-chip driver transistor drives a discrete power transistor which in turn drives the motor. In Figure 2B, the on-chip driver transistor is used as an inverting gain stage to close the loop around the op amp, and the provide drive voltage for the discrete NPN darlington transistor which drives the motor.

Both of these approaches provide accurate regulation of motor speed under conditions of varying motor load, V_{CC} and ambient temperature.

V_{CC} = 12V

CS-2917N8 OUTE Figure 2B: Motor Speed control with CS-2917N8.

Figure 2A: Motor Speed Control with CS-2907N14.

Design Example

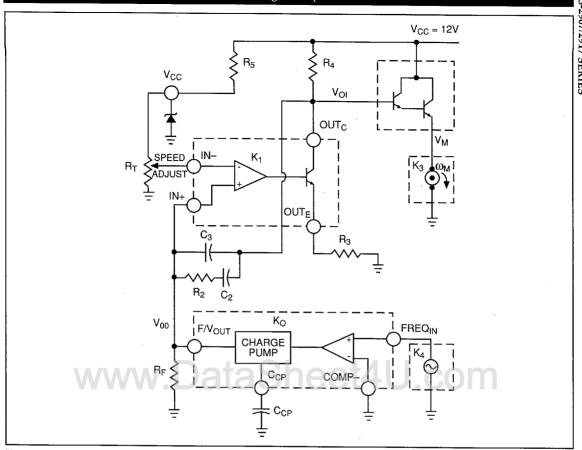


Figure 3: Motor Speed Control Block Diagram of CS-2917N8.

Figure 3 is the circuit of Figure 2B re-drawn in a block

www_DataSheet4U.com

diagram form which lends itself to visualization and analysis of the regulator loop. (Figure 2A can be analyzed in the same manner.) Potentiometer R_T provides the loop reference input. The op amp integrator, the power darlington and the motor provide the forward gain components K_1 , K_2 and K_3 . The tachometer and F-to-V converter provide the gain components K_4 and K_0 in the feedback path. We will now derive the transfer functions for all components of the loop, write the expression for loop

A. K₀ is the transfer function for the F-to-V converter.

gain, and compute component values to insure loop sta-

1.
$$K_0 - \frac{V_{00}}{f_{IN}} = KV_R R_F C_{CP}; K = 1.0; V_R = 7.6V$$

B. K_1 is the transfer function for the integrator.

bility.

2.
$$K_{1} = \left| \frac{V_{01}}{V_{00}} \right| = \frac{1 + j\omega R_2 C_2}{J\omega R_F (C_2 + C_3) \left[1 + \frac{j\omega C_2 C_3 R_2}{C_2 + C_3} \right]}$$

This transfer function has the following poles and zeros:

Zero at:
$$\omega 1 = \frac{1}{R_2C_2}$$

Pole at: $\omega = 0$ (an integrator)
Pole at: $\omega 2 = \frac{C_2 + C_3}{R_3C_2C_3}$

 $\textbf{C.}\ K_2$ is the transfer function of the power darlington transistor. Assume it equals 0.9 over the frequency range of interest.

3.
$$K_2 = \frac{V_m}{V_{03}} = 0.9$$

D. K_3 is the transfer function of the motor. (See Electrocraft Engineering Handbook, 4th edition, Pg. 2-19, eq. 2.3.28.)

4.
$$K_3 = \frac{\omega_m}{V_m} = \frac{1/K_E}{(1 + j\omega J_m)(1 + j\omega J_c)}$$

 ω_m = Motor Rotational Speed (rad/sec)

 V_m = Applied Motor Voltage $J_m = (R_A J_T / K_E K_T) = Mechanical Transformation Sheet 4U.com$

Design Example 9. $A_1 = K_0K_1K_2K_3K_4$ at $\omega = 1$ rad/sec, for

 $J_e = (L_A/R_A) = Electrical Time Constant$

 $K_T = Motor Torque Const. (oz • in/A)$ $K_E = Motor Back EMF Const. (V/rad/sec)$

 $R_A = Motor Armature Resistance (ohms)$

 L_A = Motor Armature Inductance (henrys)

 J_T = Total Inertial Load on Motor (oz, • in • sec²)

This design example describes an application using a small, permanent-magnet fractional-horsepower d.c. motor driving an inertial load. The following parameter values are taken from manufacturer's data for the motor and from laboratory measurements on the drive system. $\omega_{\rm m} = 314.2 \; {\rm rad/sec} \; (3000 \; {\rm rpm})$

$$K_T = 2.1oz. \text{ in/A} = 14.83 \times 10-3 \text{ N.M/A}$$

$$K_E = 14.83 \times 10-3 \text{ V/rad/sec}$$

$$R_E = 14.83 \times 10-3 \text{ V/ rad/sec}$$

 $R_A = 6.9\Omega$

$$J_e = 0.7 \text{ msec}$$

$$\therefore$$
 L_A = 4.83 mh, and

$$J_{\rm T} = 9.39 \times 10^{-4} \text{ oz} \cdot \text{in} \cdot \text{SEC}^2$$

$$= 6.63 \times 10^{-6} \text{ kg} \cdot \text{m}^2$$

5.
$$J_{m} = \frac{R_{A}J_{T}}{K_{E}K_{T}} = 0.208 \text{ sec}$$

$$\omega_{B} = \frac{1}{J_{m}} = 4.8 \text{ rad/ sec}$$

$$f_{R} = 0.765 Hz$$

$$\omega_{\rm e} = \frac{1}{J_{\rm e}} = 1429 \, \rm rad/sec$$

$$f_e=227Hz$$

$$1/K_e = 67.4$$

$$6. \qquad K_{3} \, = \, \frac{\omega_{m}}{V_{m}} = \frac{67.4}{\left(\, 1 + j \frac{\omega}{4.8} \,\,\right) \,\left(\, 1 + j \frac{\omega}{1429} \,\,\right)} \label{eq:K3}$$

Ignoring the electrical time constant (assumes that the loop crossover frequency is less than 1429 rad./sec.) we have:

7.
$$K_{E} = \frac{\omega_{m}}{V_{m}} = \frac{67.4}{\left(1 + j\frac{\omega}{4.8}\right)}$$

E. K₄ is the tachometer constant.

$$\omega_{\rm m} K_4 = f_{\rm in}$$

for
$$f_{in}$$
 = 400 Hz, ω_m = 314.2 rad/sec and

8. $K_4 = 1.273 \text{ cyc/rad}$ The loop gain, AL, equals. $1 < W_B < W_1, < W_7$

$$A_{I}$$
 ($\omega = 1$)

= 7.6(R₁C₁)
$$\frac{1}{R_F(C_2 + C_3)}$$
 (0.9)(67.4)(1.273)

Arbitrarily selecting a loop gain of 50 (34db) at $\omega = 1$ rad/sec, we derive the following expression:

$$\frac{C_{CP}}{C_2 + C_3} = \frac{50}{(7.6)(0.9)(67.4)(1.273)} = 0.0852$$

10.
$$C_2 + C_3 = 11.74 C_1$$

Now, select R₁C₁ to set the loop reference voltage to about 1/2 of the on-chip zener reference voltage:

11.
$$K_4 \omega_{\rm m} \bullet K_0 = V_{\rm REF} \approx 7.6/2$$

By selecting standard values for C_{CP} and R_F , $C_{CP} = 0.01 \mu F$ and $R_F = 146k\Omega$, the reference voltage at the loop operating point is:

12.
$$V_{REF} = (314.2 \text{ rad/sec}) (7.6) (1.0) (0.01 \mu\text{F})$$

(146k) (1.273) = 4.4 volts

4.4 volts is well within the regulated supply tolerance and should present no adjustment problem in production.

integrator response and motor break frequency, $f_B =$ 0.765Hz and determine suitable locations for f1 and f2 such that the compensated bode plot crosses the unity gain axis at about the mid point of the -6db/octave line segment connecting f_1 and f_2 . Selecting $f_1 = 1.5$ Hz, and $f_2 = 7.0$ Hz we have; (see Figure 4)

Now, plot the bode diagram for the loop with only the

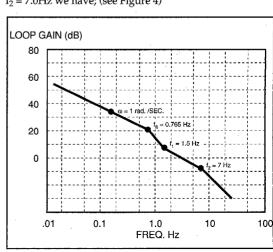


Figure 4.

www.DataSheet4U.com

$$f_1 = \frac{1}{2\pi R_2 C_2} = 1.5 Hz$$

$$f_2 = \frac{C_2 + C_3}{2\pi R_2 C_2 C_3} = 7.0 \text{Hz}$$

$$\frac{f_1}{f_2} = \frac{C_3}{C_2 + C_3} = 0.214$$

$$C_3 = 0.214 (C_2 + C_3)$$

From Equation 10

$$C_2 + C_3 = 11.74C_{CP} = 0.1174\mu F$$

$$C_3 = (0.214) (0.1174) = 0.025 \mu F$$

Select
$$C_3 = 0.022 \mu F$$

and
$$C_2 = 0.1 \mu F$$

Then;

$$R_2 = \frac{1}{2\pi f_1 C_2} = 1M\Omega$$

Resistors R_3 and R_4 are chosen to bias the on-chip drive transistor in a linear region at the desired motor speed. To maintain closed loop stability of the integrator we keep the inverting gain of this stage close to unity. For this application $R_3 = 570\Omega$ and $R_4 = 1000\Omega$. A 470Ω resistor is selected for R_5 to provide sufficient zener bias from the

12V supply. The component list for the circuit in Figure

$$\begin{array}{lll} R_F = 146k\Omega & C_{CP} = 0.01 \mu F \\ R_2 = 1M\Omega & C_2 = 0.1 \mu F \\ R_3 = 510\Omega & C_3 = 0.022 \mu F \\ R_4 = 1000\Omega & \\ R_5 = 470\Omega & \\ R_T = 100k\Omega & \end{array}$$

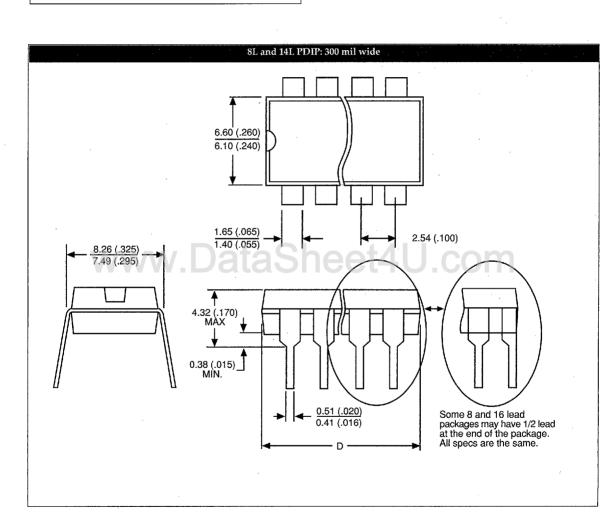
for the intended application.

2B is:

This design example illustrates a method for computing component values to insure closed loop stability of the motor speed regulator system. It is based on an application circuit which includes an integrator to provide for zero steady state error under varying load conditions. This system, with loop gain equal to 50 at ω equals 1

rad/sec gave acceptable static and dynamic performance

www.DataSheet4U.com


Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

	D			
Lead Count	M	etric	Engl	ish
	Max	Min	Max	Min
8L PDIP	9.40	9.14	.370	.360
14L PDIP	19.18	18.92	.755	.745

Therma	l Data	8 Lead PDIP	14 Lead PDIP	
R _{OJC}	typ	52	48	°C/W
$R_{\Theta JA}$	typ	100	85	°C/W

PACKAGE THERMAL DATA

Ordering Information			
Part Number	Description		
CS-2907N14	14 Lead PDIP		
CS-2907N8	8 Lead PDIP		
CS-2917N14	14 Lead PDIP		
CS-2917N8	8 Lead PDIP		