feATURES

- Tiny: 8 DACs in the Board Space of an SO-8
- Micropower: $56 \mu A$ per DAC Plus 1μ A Sleep Mode for Extended Battery Life
- Pin Compatible 8-Bit LTC1665 and 10-Bit LTC1660
- Wide 2.7 V to 5.5 V Supply Range
- Rail-to-Rail Voltage Outputs Drive 1000pF
- Reference Range Includes Supply for Ratiometric OV-to-V CC Output

- Reference Input Impedance is ConstantEliminates External Buffer

APPLICATIONS

- Mobile Communications
- Remote Industrial Devices
- Automatic Calibration for Manufacturing
- Portable Battery-Powered Instruments
- Trim/Adjust Applications

DESCRIPTIOn

The 8-bit LTC ${ }^{\circledR} 1665$ and 10-bit LTC1660 integrate eight accurate, serially addressable digital-to-analog converters (DACs) in tiny 16-pin narrow SSOP packages. Each buffered DAC draws just $56 \mu \mathrm{~A}$ total supply current, yet is capable of supplying DC output currents in excess of 5 mA and reliably driving capacitive loads to 1000pF. Sleep mode further reduces total supply current to $1 \mu \mathrm{~A}$.
Linear Technology's proprietary, inherently monotonic voltage interpolation architecture provides excellent linearity while allowing for an exceptionally small external form factor.

Ultralow supply current, power-saving Sleep mode and extremely compact size make the LTC1665 and LTC1660 ideal for battery-powered applications, while their ease of use, high performance and wide supply range make them excellent choices as general purpose converters.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

BLOCK DIAGRAM

LTC1665 Differential Nonlinearity (DNL)

LTC1660 Differential Nonlinearity (DNL)

ABSOLUTE MAXIMUM RATINGS
(Note 1)
$V_{C C}$ to GND ... -0.2 V to 7.5 V
Logic Inputs to GND \qquad -0.2 V to 7.5 V
Vouta, $V_{\text {OUt b }} \ldots V_{\text {OUT H }}$,
REF to GND \qquad -0.2 V to $\left(\mathrm{V}_{C C}+0.2 \mathrm{~V}\right)$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$ Operating Temperature Range LTC1665C/LTC1660C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1665I/LTC1660I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER	
GND 1 16 V_{CC}	LTC1665CGN	
$\mathrm{V}_{\text {OUt }} 2$	LTC1665CN	
Voutb 3 3 $14{ }^{\text {Voutg }}$	LTC1665IGN	
$V_{\text {out }} 4$ 4 ${ }^{13}$ Vouta	LTC1665IN	
Voutd 5 5 12 V Vute	LTC1660CGN	
REF 6 11 CLR	LTC1660CN	
Cs/ld 7 7 10 Dout	LTC1660IGN	
SCK 8 8 9 Din	LTC1660IN	
GN PACKAGE 16-LEAD PLASTIC SSOP $\underset{16 \text { NACKAGE }}{\text { 16-LEAD PDIP }}$	GN PART MARKING	
$\begin{aligned} & \mathrm{T}_{\mathrm{JMaX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{N}(\mathrm{GN}) \\ & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C}(\mathrm{~N}) \end{aligned}$	1665	1660
	1665I	16601

Consult factory for Military grade parts.

eLECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {OUT }}$ unloaded, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1665			LTC1660			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Accuracy										
	Resolution		\bullet	8			10			Bits
	Monotonicity	$\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$ (Note 2)	\bullet	8			10			Bits
DNL	Differential Nonlinearity	$\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$ (Note 2)	\bullet		± 0.1	± 0.5		± 0.2	± 0.75	LSB
INL	Integral Nonlinearity	$\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$ (Note 2)	\bullet		± 0.2	± 1.0		± 0.6	± 2.5	LSB
$\mathrm{V}_{\text {OS }}$	Offset Error	(Note 7)	\bullet		± 10	± 30		± 10	± 30	mV
	$V_{\text {OS }}$ Temperature Coefficient		\bullet		± 15			± 15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
FSE	Full-Scale Error	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=4.096 \mathrm{~V}$	\bullet		± 1	± 4			± 15	LSB
	Full-Scale Error Temperature Coefficient		\bullet		± 30			± 30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSR	Power Supply Rejection	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$			0.045			0.18		LSB/V

The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {OUT }}$ unloaded, unless otherwise noted.

SYMBOL	PARAMETER	CONDITONS		MIN	TYP	MAX	UNITS
Reference Input							
	Input Voltage Range		\bullet	0		$V_{C C}$	V
	Resistance	Not in Sleep Mode	\bullet	35	65		k Ω
	Capacitance	(Note 6)			15		pF
$\underline{\text { IREF }}$	Reference Current	Sleep Mode	\bullet		0.001	1	$\mu \mathrm{A}$
Power Supply							
$\mathrm{V}_{\text {CC }}$	Positive Supply Voltage	For Specified Performance	\bullet	2.7		5.5	V
ICC	Supply Current	$\begin{aligned} & V_{C C}=5 V(\text { Note 3) } \\ & V_{C C}=3 V(\text { Note 3) } \\ & \text { Sleep Mode (Note 3) } \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 450 \\ 340 \\ 1 \end{gathered}$	$\begin{gathered} 730 \\ 550 \\ 3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

€LECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {OUT }}$ unloaded, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DC Performance							
	Short-Circuit Current Low	$V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5.1 \mathrm{~V}$, Code $=$ Full Scale	\bullet	10	30	100	mA
	Short-Circuit Current High	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5.1 \mathrm{~V}, \mathrm{Code}=0$	\bullet	10	27	120	mA
AC Performance							
	Voltage Output Slew Rate	Rising (Notes 4, 5) Falling (Notes 4, 5)			$\begin{aligned} & 0.60 \\ & 0.25 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
	Voltage Output Settling Time	To $\pm 0.5 \mathrm{LSB}$ (Notes 4, 5)			30		$\mu \mathrm{S}$
	Capacitive Load Driving				1000		pF
Digital I/O							
V_{IH}	Digital Input High Voltage	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$			V
VIL	Digital Input Low Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{C C}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	V
V_{OH}	Digital Output High Voltage	$\mathrm{I}_{\text {Out }}=-1 \mathrm{~mA}, \mathrm{D}_{\text {Out }}$ Only	\bullet	$V_{\text {CC }}-1$			V
$\mathrm{V}_{\text {OL }}$	Digital Output Low Voltage	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{D}_{\text {OUT }}$ Only	\bullet			0.4	V
LLK	Digital Input Leakage	$\mathrm{V}_{\text {IN }}=$ GND to $\mathrm{V}_{\text {CC }}$	\bullet			± 10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance	(Note 6)	\bullet			10	pF

TIMInG CHARACTERISTICS The • denotes speciifications which apply over the full operating temperature

 range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (See Figure 1)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V | | | | | | | |
| t_{1} | $\mathrm{D}_{\text {IN }}$ Valid to SCK Setup | | \bullet | 40 | 15 | | nS |
| t_{2} | DIN Valid to SCK Hold | | \bullet | 0 | -11 | | ns |
| t_{3} | SCK High Time | (Note 6) | \bullet | 30 | 5 | | ns |
| t_{4} | SCK Low Time | (Note 6) | \bullet | 30 | 7 | | ns |
| t_{5} | $\overline{\text { CS/LD Pulse Width }}$ | (Note 6) | \bullet | 80 | 30 | | ns |
| t_{6} | LSB SCK High to CS/LD High | (Note 6) | \bullet | 30 | 4 | | ns |
| t_{7} | $\overline{\mathrm{CS}} / \mathrm{LD}$ Low to SCK High | (Note 6) | \bullet | 80 | 26 | | ns |
| t_{8} | D ${ }_{\text {Out }}$ Propagation Delay | $\mathrm{C}_{\text {LOAD }}=15 \mathrm{pF}$ (Note 6) | \bullet | 5 | 26 | 80 | ns |
| t9 | SCK Low to $\overline{C S} / L D$ Low | (Note 6) | \bullet | 20 | 0 | | ns |
| t_{10} | $\overline{\text { CLR Pulse Width }}$ | (Note 6) | \bullet | 100 | 37 | | ns |
| t_{11} | $\overline{\text { CS/LD High to SCK Positive Edge }}$ | (Note 6) | \bullet | 30 | 0 | | ns |
| | SCK Frequency | Continuous Square Wave (Note 6) Continuous 23\% Duty Cycle Pulse (Note 6) Gated Square Wave (Note 6) | $\stackrel{\bullet}{\bullet}$ | | | $\begin{aligned} & 5.00 \\ & 7.69 \\ & 16.7 \end{aligned}$ | MHz
 MHz
 MHz |

$V_{C C}=2.7 \mathrm{~V}$ to 5.5 V

t_{1}	DIN Valid to SCK Setup	(Note 6)	\bullet	60	20	ns
t_{2}	DIN Valid to SCK Hold	(Note 6)	\bullet	0	-14	ns
t_{3}	SCK High Time	(Note 6)	\bullet	50	8	ns
t_{4}	SCK Low Time	(Note 6)	\bullet	50	12	ns
t_{5}	$\overline{\text { CS/LD Pulse Width }}$	(Note 6)	\bullet	100	30	ns

LTC1665/LTC1660

TMI C CHPRACTERSTICS The o denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (See Figure 1)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t_{6}	LSB SCK High to $\overline{C S} / L D$ High	(Note 6)	\bullet	50	5		ns
t_{7}	$\overline{\text { CS/LD Low to SCK High }}$	(Note 6)	\bullet	100	27		ns
t_{8}	Dout Propagation Delay	$C_{\text {LOAD }}=15 \mathrm{pF}$ (Note 6)	\bullet	5	47	150	ns
tg	SCK Low to $\overline{C S} / L D$ Low	(Note 6)	\bullet	30	0		ns
t_{10}	CLR Pulse Width	(Note 6)	\bullet	120	41		ns
t_{11}	$\overline{\text { CS/LD High to SCK Positive Edge }}$	(Note 6)	\bullet	30	0		ns
	SCK Frequency	Continuous Square Wave (Note 6) Continuous 28\% Duty Cycle Pulse Gated Square Wave	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} 3.85 \\ 5.55 \\ 10 \end{gathered}$	MHz MHz MHz

Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: Nonlinearity and monotonicity are defined from code 4 to code 255 for the LTC1665 and from code 20 to code 1023 for the LTC1660.
See Applications Information.
Note 3: Digital inputs at OV or V_{CC}.
Note 4: Load is $10 \mathrm{k} \Omega$ in parallel with 100 pF .

Note 5: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$. DAC switched between $0.1 \mathrm{~V}_{\mathrm{FS}}$ and $0.9 \mathrm{~V}_{\mathrm{FS}}$, i.e., codes 26 and 230 for the LTC1665 or codes 102 and 922 for the LTC1660.
Note 6: Guaranteed by design and not production tested.
Note 7: Measured at code 4 for the LTC1665 and code 20 for the LTC1660.

TYPICAL PGRFORMANCE CHARACTERISTICS (LTC165/ITC1660)

Midscale Output Voltage vs Load Current

Midscale Output Voltage

 vs Load Current

TYPICAL PGRFORMAOCE CHARACTGRISTICS (LTC1655/LT1660)

TYPICAL PGRFORMANCE CHARACTGRISTICS (LTC1665)

Differential Nonlinearity (DNL)

LTC1665/LTC1660

TYPICAL PERFORMANCE CHARACTERISTICS (LTC1665)

1665/60 G10

Load Regulation vs Output Current

TYPICAL PGRFORMANCE CHARACTERISTICS (LTC1660)

1665/60 G12

Differential Nonlinearity (DNL)

Load Regulation vs Output Current

PIn functions (LTC1655/TCC1660)

GND (Pin 1): System Ground.
$V_{\text {OUt a }}$ to $V_{\text {OUt }}$ (Pins 2-5 and 12-15): DAC Analog
Voltage Outputs. The output range is

$$
\begin{aligned}
& 0 \text { to }\left(\frac{255}{256}\right) V_{\text {REF }} \text { for the LTC1665 } \\
& 0 \text { to }\left(\frac{1023}{1024}\right) V_{\text {REF }} \text { for the LTC1660 }
\end{aligned}
$$

REF (Pin 6): Reference Voltage Input. $\mathrm{OV} \leq \mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\mathrm{CC}}$. CS/LD (Pin 7): Serial Interface Chip Select/Load Input. When $\overline{C S} / L D$ is low, SCK is enabled for shifting data on $D_{\text {IN }}$ into the register. When $\overline{C S} / L D$ is pulled high, SCK is disabled and data is loaded from the shift register into the specified DAC register(s), updating the analog output(s). CMOS and TTL compatible.

SCK (Pin 8): Serial Interface Clock Input. CMOS and TTL compatible.
$D_{I N}$ (Pin 9): Serial Interface Data Input. Data on the $D_{\text {IN }}$ pin is shifted into the 16-bit register on the rising edge of SCK. CMOS and TTL compatible.
$D_{\text {OUT }}$ (Pin 10): Serial Interface Data Output. Data appears on $D_{\text {OUT }} 16$ positive SCK edges after being applied to $D_{\text {IN }}$. May be tied to $\mathrm{D}_{\text {IN }}$ of another LTC1665/LTC1660 for daisychain operaton. CMOS and TTL compatible.

CLR (Pin 11): Asynchronous Clear Input. All internal shift and DAC registers are cleared to zero at the falling edge of the $\overline{\mathrm{CLR}}$ signal, forcing the analog outputs to zero scale. CMOS and TTL compatible.
$V_{C C}$ (Pin 16): Supply Voltage Input. $2.7 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$.

BLOCK DIAGRAM

LTC1665/LTC1660

tImInG DIAGRAM

Figure 1

OPERATION

Transfer Function

The transfer function is
$V_{\text {OUT(IDEAL) }}=\left(\frac{k}{256}\right) V_{\text {REF }}$ for the LTC1665
$V_{\text {OUT(IDEAL) }}=\left(\frac{k}{1024}\right) V_{\text {REF }}$ for the LTC1660
where k is the decimal equivalent of the binary DAC input code and $V_{\text {REF }}$ is the voltage at REF (Pin 6).

Power-On Reset

The LTC1665 clears the outputs to zero scale when power is first applied, making system initialization consistent and repeatable.

Power Supply Sequencing

The voltage at REF (Pin 6) should be kept within the range $-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$ (see Absolute Maximum Ratings). Particular care should be taken to observe these limits during power supply turn-on and turn-offsequences, when the voltage at $V_{C C}$ (Pin 16) is in transition.

Serial Interface

Referring to Figure $2 a(2 b)$: With $\overline{C S} / L D$ held low, data on the $D_{\text {IN }}$ input is shifted into the 16-bit shift register on the positive edge of SCK. The 4-bit DAC address, A3-A0, is loaded first (see Table 2), then the 8-bit (10-bit) input code, D7-D0 (D9-D0), ordered MSB-to-LSB in each case. Four (two) don't-care bits, X3-X0 (X1-X0), are loaded last. When the full 16 -bit input word has been shifted in, $\overline{C S} / L D$ is pulled high, loading the DAC register with the word and causing the addressed DAC output(s) to update. The clock is disabled internally when CS/LD is high. Note: SCK must be low before $\overline{C S} / L D$ is pulled low.
The buffered serial output of the shift register is available on the $D_{\text {OUT }}$ pin, which swings from GND to $\mathrm{V}_{\text {CC }}$. Data appears on Dout 16 positive SCK edges after being applied to $D_{\text {IN }}$.
Multiple LTC1665/LTC1660's can be controlled from a single 3-wire serial port (i.e., SCK, $D_{\text {IN }}$ and $\overline{C S} / L D$) by using the included "daisy-chain" facility. A series of m chips is configured by connecting each $\mathrm{D}_{\text {OUT }}$ (except the last) to $D_{\text {IN }}$ of the next chip, forming a single 16 m -bit shift register. The SCK and $\overline{C S} / L D$ signals are common to all

LTC 1665/LTC1660

operation

Figure 2a. LTC1665 Register Loading Sequence

Figure 2b. LTC1660 Register Loading Sequence

Table 1a. LTC1665 Input Word

Table 1b. LTC1660 Input Word

$\underbrace{$| A3 | A2 | A1 | A0 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | X1 | X0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}$_{\text {Address/Control }} \underbrace{}_{\text {Input Code }}$| Don't |
| :--- |
| Care |,

chips in the chain. In use, $\overline{C S} / L D$ is held low while m 16-bit words are clocked to $D_{\text {IN }}$ of the first chip; $\overline{C S} / L D$ is then pulled high, updating all of them simultaneously.

Sleep Mode

DAC address 1110_{b} is reserved for the special Sleep instruction (see Table 2). In this mode, the digital interface stays active while the analog circuits are disabled; static power consumption is thus virtually eliminated. The reference input and analog outputs are set in a high impedance
operation
Table 2. DAC Address/Control Functions

ADDRESS/CONTROL					
A3	A2	A1	A0	DAC STATUS	SLEEP STATUS
0	0	0	0		Wake
0	0	0	1	Load DAC A	Wake
0	0	1	0	Load DAC B	Wake
0	0	1	1	Load DAC C	Wake
0	1	0	0	Load DAC D	Wake
0	1	0	1	Load DAC E	Wake
0	1	1	0	Load DAC F	Wake
0	1	1	1	Load DAC G	Wake
1	0	0	0	Load DAC H	Wake
1	0	0	1	No Change	Wake
1	0	1	0	No Change	Wake
1	0	1	1	No Change	Wake
1	1	0	0	No Change	Wake
1	1	0	1	No Change	Wake
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	No Change	Sleep
1	1	1	1	Load ALL DACs	Wake
				with Same 8/10-Bit Code	

state and all DAC settings are retained in memory so that when Sleep mode is exited, the outputs of DACs not updated by the Wake command are restored to their last active state.

Sleep mode is initiated by performing a load sequence to address 1110_{b} (the DAC input word D7-D0 [D9-D0] is ignored). Once in Sleep mode, a load sequence to any other address (including "No Change" addresses 0000 ${ }_{\text {b }}$ and 1001-1101b) causes the LTC1665/LTC1660 to Wake. It is possible to keep one or more chips of a daisy chain in continuous Sleep mode by giving the Sleep instruction to these chips each time the active chips in the chain are updated.

Voltage Outputs

Each of the eight rail-to-rail output amplifiers contained in these parts can source or sink up to 5 mA . The outputs swing to within a few millivolts of either supply rail when unloaded and have an equivalent output resistance of 85Ω when driving a load to the rails. The output amplifiers are stable driving capacitive loads up to 1000 pF .
A small resistor placed in series with the output can be used to achieve stability for any load capacitance. A $1 \mu \mathrm{~F}$ load can be successfully driven by inserting a 20Ω resistor; a 2.2μ F load needs only a 10Ω resistor. In either case, larger values of resistance, capacitance or both may be safely substituted for the values given.

Rail-to-Rail Output Considerations

In any rail-to-rail output voltage DAC, the output is limited to voltages within the supply range.
If the DAC offset is negative, the output for the lowest codes limits at OV as shown in Figure 3b.

Similarly, limiting can occur near full scale when the REF pin is tied to $\mathrm{V}_{C C}$. If $\mathrm{V}_{\text {REF }}=\mathrm{V}_{C C}$ and the DAC full-scale error (FSE) is positive, the output for the highest codes limits at $V_{C C}$ as shown in Figure 3c. No full-scale limiting can occur if $V_{\text {REF }}$ is less than $V_{C C}-F S E$.
Offset and linearity are defined and tested over the region of the DAC transfer function where no output limiting can occur.

OPERATION

Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When $V_{\text {REF }}=V_{\text {CC }}$

LTC1665/LTC1660

TYPICAL APPLICATIONS

A Low Power Quad Trim Circuit with Coarse/Fine Adjustment

$R 2 \gg R 1$
$V_{\text {OUT } 1}=V_{\text {OUT A }}+\left(\frac{R 1}{R 2}\right) V_{\text {OUT B }}$
Similarly $\mathrm{V}_{\text {OUT } 2}, \mathrm{~V}_{\text {OUT } 3}, \mathrm{~V}_{\text {OUT } 4}$
Example: For R1 $=110 \Omega$ and $R 2=11 \mathrm{k}$,
$V_{\text {OUT } 1}=V_{\text {OUT A }}+0.01 \mathrm{~V}_{\text {OUT B }}$

TYPICAL APPLICATIONS

An 8-Channel Bipolar Output Voltage Circuit Configuration

LTC1665/LTC1660

PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted.

GN Package
16-Lead Plastic SSOP (Narrow 0.150)
(LTC DWG \# 05-08-1641)

* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " $(0.152 \mathrm{~mm})$ PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}$ (0.254 mm) PER SIDE

PACKAGE DESCRIPTIOी Dimensions in inches (millimeters) unless otherwise noted.

N Package
 16-Lead PDIP (Narrow 0.300)

(LTC DWG \# 05-08-1510)

THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm) N16 1098

LTC1665/LTC1660

TYPICAL APPLICATION

A Pin Driver V_{H} and V_{L} Adjustment Circuit for ATE Applications

$$
\begin{aligned}
& V_{A}=V_{C}=2.5 \mathrm{~V} \\
& V_{H^{\prime}}=V_{H}+\frac{R_{F}}{R_{G}}\left(V_{A}-V_{B}\right) \\
& V_{L}^{\prime}=V_{L}+\frac{R_{F}}{R_{G}}\left(V_{C}-V_{D}\right)
\end{aligned}
$$

For Resistor Values Shown:
Adjustment Range $= \pm 250 \mathrm{mV}$
Adjustment Step Size $=500 \mu \mathrm{~V}$

Note: DACs E Through H Can Be Configured for a Second Pin Driver With U2C and U2D of the LT1369

CODE \mathbf{A}	CODE \mathbf{B}	$\Delta \mathbf{V}_{\mathbf{H}}, \Delta \mathbf{V}_{\mathbf{L}}$
512	1023	-250 mV
512	512	0
512	0	+250 mV

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1661	Dual 10-Bit $\mathrm{V}_{\text {Out }}$ DAC in 8-Lead MSOP Package	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 5.5V Micropower Rail-to-Rail Output
LTC1663	Single 10-Bit V ${ }_{\text {Out }}$ DAC in SOT-23 Package	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 5.5 V , Internal Reference, $60 \mu \mathrm{~A}$
LTC1446/LTC1446L	Dual 12-Bit $\mathrm{V}_{\text {OUT }}$ DACs in $\mathrm{SO}-8$ Package with Internal Reference	LTC1446: $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 4.095 V LTC1446L: $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to 2.5 V
LTC1448	Dual 12-Bit $\mathrm{V}_{\text {OUT }}$ DAC in S0-8 Package	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 5.5V, External Reference Can Be Tied to $\mathrm{V}_{C C}$
LTC1454/LTC1454L	Dual 12-Bit $\mathrm{V}_{\text {OUT }}$ DACs in $\mathrm{SO}-16$ Package with Added Functionality	LTC1454: $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 4.095 V LTC1454L: $V_{\text {CC }}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to 2.5 V
LTC1458/LTC1458L	Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality	LTC1458: $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to 4.095 V LTC1458L: V ${ }_{\text {CC }}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to 2.5 V
LTC1590	Dual 12-Bit I Iout DAC in S0-16 Package	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5V, 4-Quadrant Multiplication
LTC1659	Single Rail-to-Rail 12-Bit $\mathrm{V}_{\text {OUT }}$ DAC in 8-Lead MSOP Package $\mathrm{V}_{\text {CC }}$: 2.7 V to 5.5 V	Low Power Multiplying V OUT DAC. Output Swings from GND to REF. REF Input Can Be Tied to V_{CC}
LT1460	Micropower Precision Series Reference, 2.5V, 5V, 10V Versions	0.075\% Max, 10ppm/ ${ }^{\circ} \mathrm{C}$ Max, Only $130 \mu \mathrm{~A}$ Supply Current

