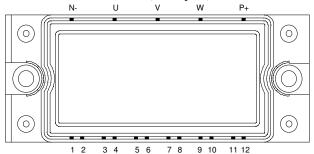

APTGF50X60E2 APTGF50X60P2

3 Phase bridge NPT IGBT Power Module


$$\begin{split} V_{CES} &= 600V \\ I_C &= 50A @ Tc = 80^{\circ}C \end{split}$$

Pin out: APTGF50X60E2 (Long pins)

Pin out: APTGF50X60P2 (Short pins)

Application

• AC Motor control

Features

- Non Punch Through (NPT) Fast IGBT®
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 50 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - Avalanche energy rated
 - RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- Very low stray inductance
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Stable temperature behavior
- Very rugged
- Solderable terminals for easy PCB mounting
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive TC of VCEsat
- Low profile

All ratings @ $T_j = 25^{\circ}C$ unless otherwise specified

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		600	V
$I_{\rm C}$	Continuous Collector Current	$T_C = 25^{\circ}C$	70	
	Continuous Conector Current	$T_C = 80^{\circ}C$	50	A
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	125	
V_{GE}	Gate – Emitter Voltage		±20	V
P_D	Maximum Power Dissipation	$T_C = 25^{\circ}C$	250	W
SCSOA	Short Circuit Safe Operating Area	$T_j = 125^{\circ}C$	225A@360V	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

APTGF50X60E2 APTGF50X60P2

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
BV_{CES}	Collector - Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 500 \mu A$		600			V
I _{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V$	$T_j = 25^{\circ}C$		1	500	μΑ
		$V_{CE} = 600V$ $T_j = 125$	$T_j = 125$ °C		1		mA
V _{CE(on)}	Collector Emitter on Voltage		$T_j = 25^{\circ}C$		1.95	2.45	V
				2.2		V	
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_C = 1 \text{mA}$		3		6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE} = 0V$				400	nA

Dynamic Characteristics

·	Characteristic	Test Conditions	Min	Typ	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		2200		pF
C_{res}	Reverse Transfer Capacitance	f = 1MHz		200		pr
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (25°C)		40		ns
$T_{\rm r}$	Rise Time	$V_{GE} = \pm 15V$ $V_{Bus} = 300V$		9		
$T_{d(off)} \\$	Turn-off Delay Time	$I_C = 50A$		120		
T_{f}	Fall Time	$R_G = 2.7\Omega$		12		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (125°C)		42		
$T_{\rm r}$	Rise Time	$V_{GE} = \pm 15V$ $V_{Bus} = 300V$ $I_{C} = 50A$		10		ns
$T_{d(off)}$	Turn-off Delay Time			130		115
T_{f}	Fall Time	$R_G = 2.7\Omega$		21		
E_{off}	Turn off Energy			1.0		mJ

Reverse diode ratings and characteristics

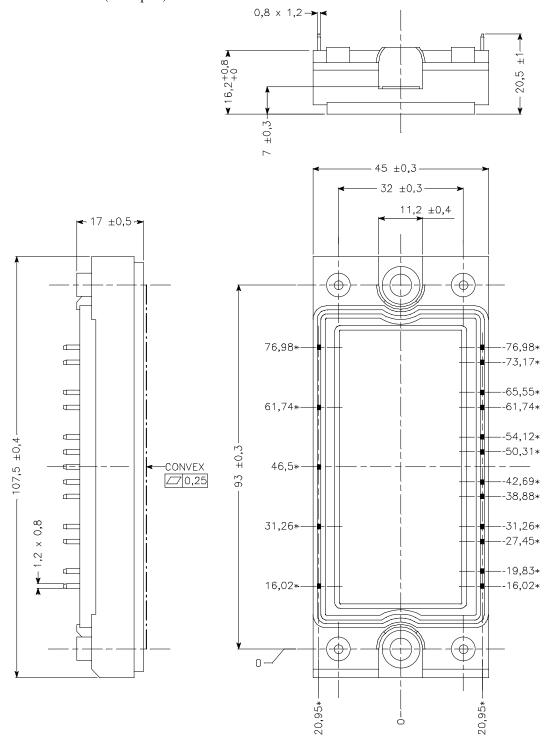
Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{F}	Diode Forward Voltage	$I_F = 50A$ $V_{GE} = 0V$	$T_i = 25^{\circ}C$		1.25	1.6	V
		$V_{GE} = 0V$	$T_i = 125$ °C		1.2		ľ
E_R	Reverse Recovery Energy	$I_F = 50A$ $V_R = 300V$ $di/dt = 800A/\mu s$	$T_j = 125$ °C		1.5		mJ
Q_{rr}	Reverse Recovery Charge	$I_F = 50A$	$T_j = 25^{\circ}C$		3.4		
		$V_R = 300V$ di/dt =800A/µs	$T_j = 125$ °C		5.6		μC

Thermal and package characteristics

Symbol	Characteristic			Min	Typ	Max	Unit
R_{thJC}	Junction to Case		IGBT			0.5	°C/W
	Junction to Case		Diode			0.8	C/ VV
V_{ISOL}	RMS Isolation Voltage, any terminal to case			2500			V
* ISOL	I isol<1mA, 50/60Hz			2300			,
T_{J}	Operating junction temperature range		-40		150		
T_{STG}	Storage Temperature Range		-40		125	°C	
$T_{\rm C}$	Operating Case Temperature					125	
Torque	Mounting torque	To Heatsink	M5	2		3.5	N.m
Wt	Package Weight					185	g

Package outline

Pin out: APTGF50X60E2 (Long pins) 0,8- $\overline{+}$ ±0,3≠ 6,9 Ø 5,5 20,95* 20,95* $17 \pm 0,5$ 0 16,02* 19,83* 16,02* 27,45* 31,26* 31,26* 38,88* 42,69* ±0,3-CONVEX 46,5* 93 50,31* **7**0,25 54,12* 61,74* 65,55* 61,74* - 73,17* - 76,98* 76,98* 14+0,8 **∢**11→ \emptyset 2,1-6 (4x) 32 ±0,3 Ø 6 (4x)


ALL DIMENSIONS MARKED "*" ARE TOLERENCED AS:

45 ±0,3

APTGF50X60E2 APTGF50X60P2

Package outline

Pin out: APTGF50X60P2 (Short pins)

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.