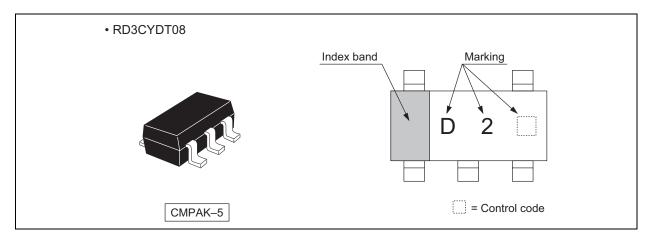


RD3CYDT08

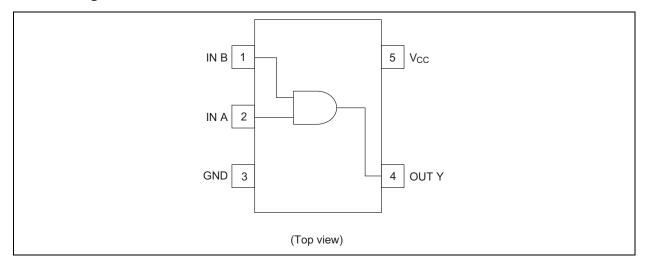
IGBT Driver

REJ03D0905-0300 Rev.3.00 Apr 22, 2008

Description


The RD3CYDT08 has two-input AND gate in a 5 pin package. This product is suited as IGBT Driver IC for the strobe.

Features

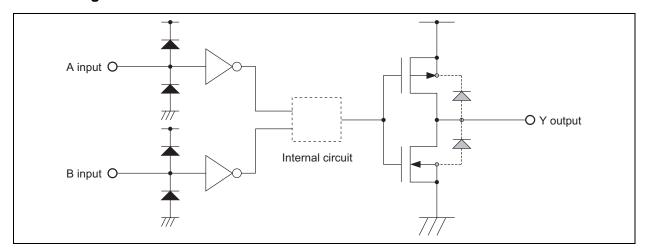

- Supplied on emboss taping for high-speed automatic mounting.
- Supply voltage range: 2.0 to 3.6 V
- Operating temperature range : -40 to +85°C
- High drive current
 - I_{OH} short = -130 mA (typ) (@V_{CC} = 3.3 V)
- Low sink current
 - I_{OL} short = 45 mA (typ) (@V_{CC} = 3.3 V)
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
RD3CYDT08CME	CMPAK-5 pin	PTSP0005ZC-A (CMPAK-5V)	СМ	E (3,000 pcs/reel)

Outline and Article Indication

Pin Arrangement

Logic Diagram



Function Table

Inp	Output Y		
Α	В	Output 1	
L	L	L	
Н	L	L	
L	Н	L	
Н	Н	Н	

H : High level L : Low level

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	-0.5 to 4.6	V	
Input voltage range *1	V _I	-0.5 to V _{CC} + 0.5	V	
Output voltage range *1,2	Vo	-0.5 to V _{CC} + 0.5	V	
Input clamp current	I _{IK}	±50	mA	$V_I < 0$ or $V_I > V_{CC}$
Output clamp current	I _{OK}	±50	mA	$V_O < 0$ or $V_O > V_{CC}$
Continuous output current	lo	-200	mA	$V_O = 0$
Continuous output current		100	IIIA	$V_O = V_{CC}$
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±200	mA	
Maximum power dissipation at Ta = 25°C (in still air) $*^3$	P _T	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. When Over shoot / Under shoot pulse width is under 10 ns, input and output voltage permit to -1.5 V or V_{CC}+1.5V.
- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

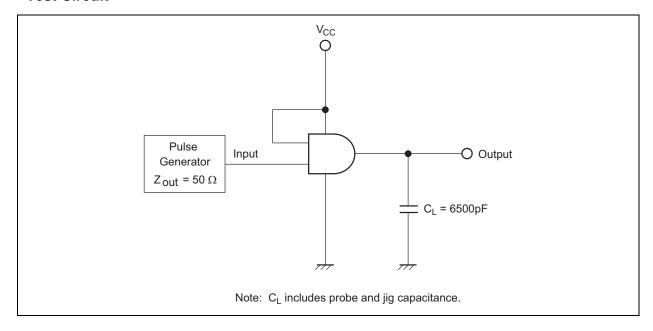
Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V _{CC}	2.0	3.6	V	
Input voltage range	VI	0	V _{CC}	V	
Output voltage range	Vo	0	V _{CC}	V	
Input transition rise or fall rate	Δt / ΔV	0	100	ns / V	
Operating free-air temperature	Та	-40	85	°C	

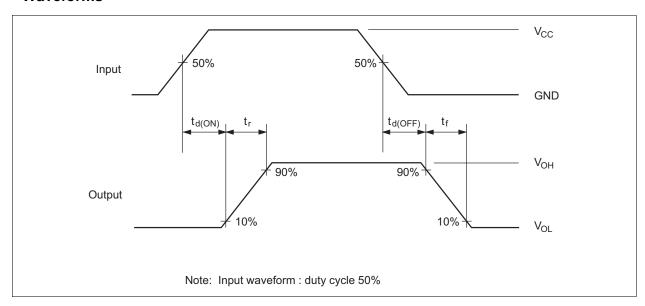
Note: Unused or floating inputs must be held high or low.

Electrical Characteristic

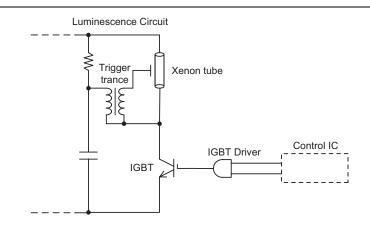
 $Ta = -40 \text{ to } 85^{\circ}C$


No	0	V 00	A4"	-		11	T P
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test condition
Input voltage	V _{IH}	3.0 to 3.6	1.4	_	_	V	
Input voltage	V_{IL}	3.0 to 3.6	_	_	0.5	V	
Output current	I _{OH} short	3.3	-100	-130	-160	mA	
Output current	I _{OL} short	3.3	30	45	60		
Input current	I _{IN}	3.6		_	±5	μΑ	$V_{IN} = 3.6 \text{ V or GND}$
Quiescent supply current	I _{CC}	3.6	ı	_	10	μΑ	$V_{IN} = V_{CC}$ or GND, $I_O = 0$
Input capacitance	C _{IN}	3.3	_	2.5	_	pF	$V_{IN} = V_{CC}$ or GND

Switching Characteristics


 $V_{CC}=3.3\pm0.3\ V$

Item	Symbol	Ta = -40 to 85°C			Unit	Test	FROM	ТО
item	Symbol	Min	Тур	Max	Ollit	Conditions	(Input)	(Output)
Propagation delay time	t _{d(ON)}	_	_	50				
Propagation delay time	t _{d(OFF)}	_	_	160		C _L = 6500 pF	A or B	Y
Output rise time	t _r	_	_	500	ns			
Output fall time	t _f	_	_	1500				

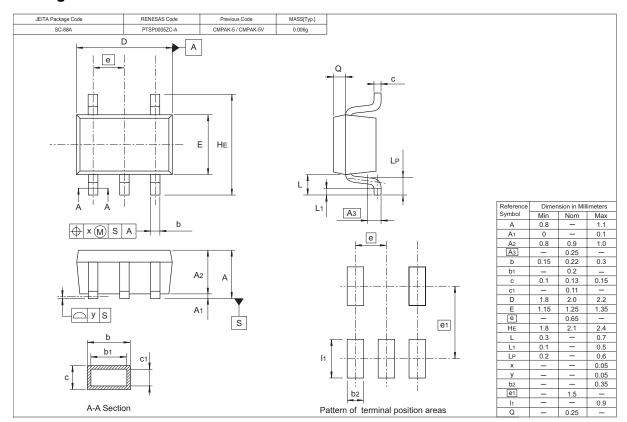

Test Circuit

Waveforms

Application Note (Strobe circuit)

Combination example

	SYSTEM	IGRT	IGBT Driver	Control IC
	STOTEM	1001	IOD I DIIVei	Control IC
	3.3 V	RJP4002ANS RJP4002ASA	RD3CYD08	3.3 V signal
	3.3 V	RJP4002ASA	RD3CYDT08	3.3 V Signal
	5.0 V	RJP4003ANS RJP4003ASA	RD5CYD08 ←	5.0 V signal
	3.0 V	RJP4003ASA	RD5CYDT08 ◀	3.3 V signal


IGBT Driver Lineup

TYPE No.	Specification	Package
RD3CYD08	V_{CC} = 2.0 to 3.6V CMOS lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 3.3V $I_{OL}(short)$ = 45mA(typ) @ V_{CC} = 3.3V	CMPAK-5 VSON-5
RD3CYDT08	V_{CC} = 2.0 to 3.6V CMOS lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 3.3V $I_{OL}(short)$ = 45mA(typ) @ V_{CC} = 3.3V	CMPAK-5
RD5CYD08	V_{CC} = 4.0 to 6.0V CMOS lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 5.0V $I_{OL}(short)$ = 40mA(typ) @ V_{CC} = 5.0V	CMPAK-5
RD5CYDT08	V_{CC} = 4.0 to 6.0V TTL lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 5.0V $I_{OL}(short)$ = 40mA(typ) @ V_{CC} = 5.0V	GIVIF AR-3

IGBT Lineup

TYPE No.	Specification	Package
RJP4002ANS	V_{CES} = 400V(max), I_{CP} = 150A(max), 2.5V drive	VSON-8
RJP4002ASA	V _{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	TSSOP-8
RJP4003ANS	V_{CES} = 400V(max), I_{CP} = 150A(max), 4V drive	VSON-8
RJP4003ASA	V_{CES} = 400V(max), I_{CP} = 150A(max), 4V drive	TSSOP-8

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes in the respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of waspons of mass and included in this document such as product data, diagrams, and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required to such as a few such as a s

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

L		