

INNOVATIVE DISPLAY TECHNOLOGIES 17171 Murphy Avenue Irvine, California 92614-5915 P: 949-417-8070/F: 949-417-8075

> E-mail: <u>info@shellyinc.com</u> Website: <u>www.shellyinc.com</u>

Specification

Part Number	•	SCA02411-TFN-LNN
	-	

Customer :

APPROVED BY:

(FOR CUSTOMER USE ONLY)

PCB VERSION:

DATE:

SOLD BY	APPROVED BY	CHECKED BY	ISSUE DATE

CONTENTS

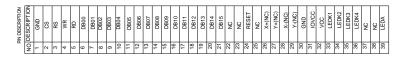
<i>NO</i> .	ITEM	PAGE
1.	Cover	1
2.	Record of Revision	2
3.	LCD Module Physical Data	3
4.	External Dimensions	4
5.	Block Diagram	5~6
6.	Absolute Maximum Ratings	6
7.	Electrical Characteristics	7~8
8.	Interface PIN Connections	8
9.	Recommend Initial Code	9~10
10.	Electro-Optical Characteristics	11~16
11.	Inspection Criterion	17~20
12.	Precautions for Using LCD Modules	21~23

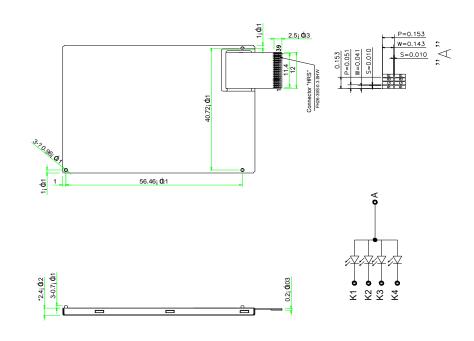
ACCEPTED BY: PROPOSED BY :

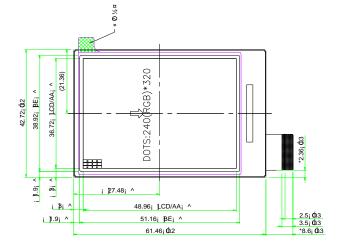
RECORD OF REVISION

DATE	PAGE	SUMMARY
10/30/09	3	Added version # A801

♦ LCD MODULE PHYSICAL DATA


<u>General Description</u>

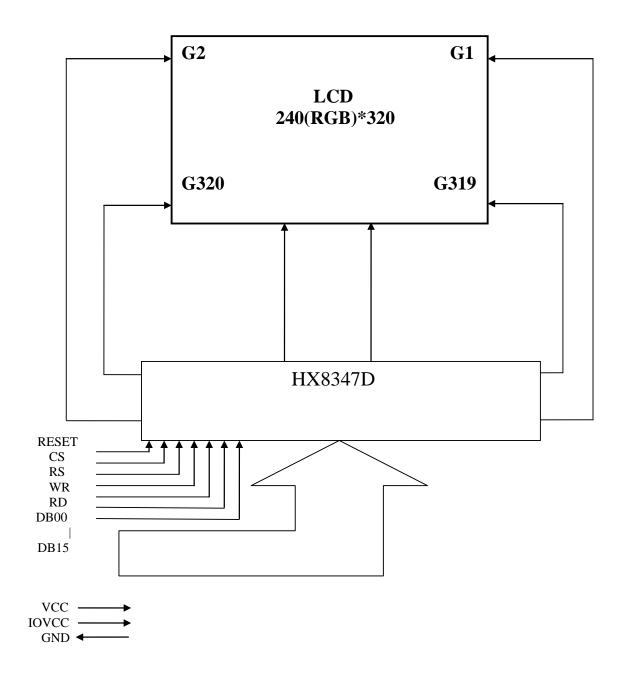

Display Type	262K TFT
Display Mode	Transmissive, Positive
Viewing Direction	12 o'clock
Connection Type	COG
Operation temperature	-20°C~70°C
Storage temperature	-30°C~ 80°C
Driving IC	HX8347D


<u>Mechanical Description</u>

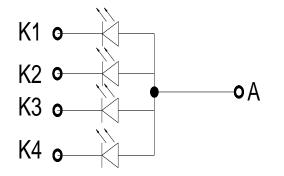
Item	Standard Value	Unit
Number of dots	240RGB×320dots	-
LCM dimension	42.72(W)×61.46(H)×2.4(T)	mm
Active area	36.72(W)×48.96(H)	mm
Dot size	0.143 (W)×0.143(H)	mm
Dot pitch	0.153 (W)×0.153(H)	mm
Backlight	4 Chip White LEDS Parallel	/

EXTERNAL DIMENSIONS

NOTES:


- 1. DISPLAY TYPE: TFT 262K
- 2. CONNECTOR: COG(IC:HX8347D)
- 3. FRONT POLARIZER: TRANSMISSIVE/POSITIVE
- - 4. REAR POLARIZER: TRANSMISSIVE/POSITIVE
- 5. BACKLIGHT i OWhite LED 4 CHIP
- LCM LUMINANCE:280cd/m(TYP.),250cd/m2(MIN.)20MA/LED
 - 7. OPERATING TEMP: -20°C~70°C

 - 8. STORAGE TEMP: -30°C~80°C
- 9. ALL MATTER ALS MUST BE BHS-001 COMPLIANT


- 10. GENERAL TOLERANCE ; GÓ.2
 - - 11. "*" KEY DI MENSIAON

• BLOCK DIAGRAM

• TFT-LCD Module (Interface System Structure)

Backlight Circuit

♦ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Operating temperature	Тор	-20 to 70	°C
Storage temperature	Tst	-30 to 80	°C
Input voltage	Vin	-0.3 to IOVCC+0.5	V
Power Supply Voltage	VCI	-0.3 to +4.6	V
Supply voltage for LCD	VGH ~ VSSA	-0.3 to +18.5	V

NOTE:

- 1. If the module is used above these absolute maximum ratings. It may become permanently damaged. Using the module within the following electrical characteristic conditions are also exceeded, the module will malfunction and cause poor reliability.
- 2. VDD>GND must be maintained.

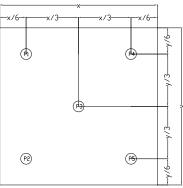
• ELECTRICAL CHARACTERISTICS

• <u>DC Characteristics</u>

Vss= 0V, Ta= 25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Input high voltage	Vih	-	0.7 IOVCC	-	IOVCC	V
Input low voltage	VIL	-	GND	-	0.3 IOVCC	V
Output high voltage	Vон	IOH=-1.0mA	0.8 IOVCC	-	IOVCC	V
Output low voltage	Vol	IOL=+1.0mA	GND	-	0.2 IOVCC	V
I/O Operating voltage	IOVCC	Ta=25°C	1.65	1.8	3.3	
Driver Operating voltage	VCI	Ta=25°C	2.4	2.8	3.3	V
Operating voltage for LCD	VGH	Ta=25°C	-	-	18.5	V
Current consumption for LCD normal operation	Idd	VDD =2.8V	-	-	8	mA

Back-Light unit


Item	Symbol	Min	Тур	Max	Unit	Remark
Current	\mathbf{I}_{BL}	-	20	-	mA	1 LED
CIE	X	0.25	-	0.29	-	X>Y
CIE	Y	0.24	-	0.28	-	A>1
Brightness	-	6000	-	-	cd/m²	-
Luminance	_	80	-	-	%	_
Uniformity Ratio		00			70	
Bezel(BE) must be connected to ground of the main board						

Note:

1. Average Luminous Uniformity of P1 ~ P5 (Using a luminance meter BM-7)

2. Luminous Uniformity Ratio = min/max * 100%

Measured Method (X*Y: Light Area).

• <u>AC Characteristics</u> Refer to the SPEC of HX8347D

♦ INTERFACE PIN CONNECTIONS

NO.	Symbol	Function
1	GND	Ground
2	CS	Chip select signal. Low: chip can be accessed; High: chip cannot be accessed. Must be connected to VSSD if not in use.
3	RS	Command / parameter or display data selection pin.
4	WR	Write enable pin I80 parallel bus system interface.
5	RD	Read enable pin I80 parallel bus system interface.
6	DB00	
7	DB01	
8	DB02	
9	DB03	
10	DB04	
11	DB05	
12	DB06	
13	DB07	16-bit Data bus
14	DB08	10-bit Data bus
15	DB09	
16	DB10	
17	DB11	
18	DB12	
19	DB13	
20	DB14	
21	DB15	
22	NC	No connection
23	NC	
24	RESET	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied.
25	NC	
26	X+(NC)	
27	Y+(NC)	No connection
28	X-(NC)	
29	Y-(NC)	
30	GND	Ground
31	IOVCC	Digital IO Pad power supply
32	VCC	Analog power supply
33	LEDK1	
34	LEDK2	Backlight negative
35	LEDK3	Dacklight negative
36	LEDK4	
37	NC	No connection
38	NC	
39	LEDA	Backlight positive

Recommend Initial Code

```
void initial()
   reset=1:
                                       // Delay 50ms
   delay(50);
   reset=0;
   delay(50);
                                      // Delay 50ms // This delay time is necessary
   reset=1;
   delay(50);
//Gamma for CMO 2.4"
Set_LCD_8B_REG(0x00EA,0x0000); //PTBA[15:8]
Set LCD 8B REG(0x00EB,0x0020); //PTBA[7:0]
Set LCD 8B REG(0x00EC,0x000C); //STBA[15:8]
Set LCD 8B REG(0x00ED,0x00C4); //STBA[7:0]
Set LCD 8B REG(0x00E8,0x0038); //OPON[7:0]
Set LCD 8B REG(0x00E9,0x0010); //OPON1[7:0]
Set_LCD_8B_REG(0x00F1,0x0001); //OTPS1B
Set_LCD_8B_REG(0x00F2,0x0010); //GEN
//
//Gamma 2.4 Setting
Set_LCD_8B_REG(0x0040,0x0001); //
Set LCD 8B REG(0x0041,0x0000); //
Set LCD 8B REG(0x0042,0x0000); //
Set_LCD_8B_REG(0x0043,0x0010); //
Set LCD 8B REG(0x0044,0x000E); //
Set LCD 8B REG(0x0045,0x0024); //
Set LCD 8B REG(0x0046,0x0004); //
Set_LCD_8B_REG(0x0047,0x0050); //
Set LCD 8B REG(0x0048,0x0002); //
Set LCD 8B REG(0x0049,0x0013); //
Set_LCD_8B_REG(0x004A,0x0019); //
Set_LCD_8B_REG(0x004B,0x0019); //
Set LCD 8B REG(0x004C,0x0016); //
Set_LCD_8B_REG(0x0050,0x001B); //
Set_LCD_8B_REG(0x0051,0x0031); //
Set LCD 8B REG(0x0052,0x002F); //
Set_LCD_8B_REG(0x0053,0x003F); //
Set_LCD_8B_REG(0x0054,0x003F); //
Set LCD 8B REG(0x0055,0x003E); //
Set_LCD_8B_REG(0x0056,0x002F); //
Set_LCD_8B_REG(0x0057,0x007B); //
Set LCD 8B REG(0x0058,0x0009); //
Set_LCD_8B_REG(0x0059,0x0006); //
Set LCD 8B REG(0x005A,0x0006); //
Set_LCD_8B_REG(0x005B,0x000C); //
Set_LCD_8B_REG(0x005C,0x001D); //
Set LCD 8B REG(0x005D,0x00CC); //
```

//Power Voltage Setting

Set LCD 8B REG(0x001B,0x001B); //VRH=4.65V Set LCD 8B REG(0x001A,0x0001); //BT (VGH~15V,VGL~-10V,DDVDH~5V) Set_LCD_8B_REG(0x0024,0x002F); //VMH(VCOM High voltage ~3.2V) Set LCD 8B REG(0x0025,0x0057); //VML(VCOM Low voltage -1.2V) //****VCOM offset**/// Set LCD 8B REG(0x0023.0x008a); //for Flicker adjust //can reload from OTP//0088 //Power on Setting Set LCD 8B REG(0x0018,0x0036); //I/P RADJ,N/P RADJ, Normal mode 60Hz Set LCD 8B REG(0x0019,0x0001); //OSC EN='1', start Osc Set_LCD_8B_REG(0x0001,0x0000); //DP_STB='0', out deep sleep Set LCD 8B REG(0x001F,0x0088);// GAS=1, VOMG=00, PON=0, DK=1, XDK=0, DVDH TRI=0, STB=0 DelayX1ms(5); Set LCD 8B REG(0x001F,0x0080);// GAS=1, VOMG=00, PON=0, DK=0, XDK=0, DVDH TRI=0, STB=0 DelayX1ms(5); Set_LCD_8B_REG(0x001F,0x0090);// GAS=1, VOMG=00, PON=1, DK=0, XDK=0, DVDH_TRI=0, STB=0 DelayX1ms(5); Set LCD 8B REG(0x001F,0x00D0):// GAS=1, VOMG=10, PON=1, DK=0, XDK=0, DDVDH TRI=0, STB=0 DelayX1ms(5); //262k/65k color selection Set LCD 8B REG(0x0017,0x0005); //default 0x06 262k color // 0x05 65k color //SET PANEL Set LCD 8B REG(0x0036,0x0000); //SS P, GS P, REV P, BGR P //Display ON Setting Set LCD 8B REG(0x0028,0x0038); //GON=1, DTE=1, D=1000 DelavX1ms(40): Set LCD 8B REG(0x0028,0x003F); //GON=1, DTE=1, D=1100 //Set GRAM Area Set LCD 8B REG(0x0002,0x0000); Set LCD 8B REG(0x0003,0x0000); //Column Start Set LCD 8B REG(0x0004,0x0000); Set LCD 8B REG(0x0005,0x00EF); //Column End Set_LCD_8B_REG(0x0006,0x0000); Set LCD 8B REG(0x0007,0x0000); //Row Start Set LCD 8B REG(0x0008,0x0001); Set LCD 8B REG(0x0009,0x003F); //Row End write command(0x22);

}

♦ ELECTRO-OPTICAL CHARACTERISTICS

Driving condition: VDD=2.8V, I_{BL}=20mA/LED, Temperature =23°C±5°C , Humidity=60%±20%RH

T.				a 1 1	1	Specifica	tions	T T •4		
Ite	em	Light angle ($^\circ$)	Temp (°C)	Symbol	Min.	Тур.	Max.	Unit	Conditions	Note
Transm	ittance	0	25	-	-	5	-	%		(1)
Contra	st ratio	0	25	Cr	-	630	-	-		(2)
Brigh	tness	0	25	-	-	345	-	cd/m ²		-
Luminance (surface wi		0	25	Lu	70	80	-	%	%	(3)
Cross	s talk	0	25	CTV	-	-	20	%		(4)
	R x			Rx	05532	0.6032	0.6532		(Equipment :BM-7/CS200)	
	Ry	-		Ry	0.2792	0.3292	0.3792			
	G X		25	Gx	0.2729	0.3229	0.3729	-		
Charles di site	G y			Gy	0.5293	0.5793	0.6293			-
Chromaticity	Вх	0		Bx	0.0919	0.1419	0.1919			
	Ву			Ву	0.0229	0.0729	0.1229			
	W x			Wx	0.2146	0.2646	0.3146			
	Wу			Wy	0.2315	0.2815	0.3315			
Color Rep Area(oroduction NTSC)	0	25	-	-	59	-	%	CIE1931(x,y)	(5)
	Tr	- 0	25	_	-	10	20	ms	Viewing normal angle	-
Response time	Tf	Ū	23	-	-	20	30	1115	$\theta_X = \theta_Y = 0^0$	-
	Hor. θ_{X+}			-	-	60	-			
Viewing angle	$\theta_{\rm v}$	0	25	-	-	60	-	deg	Center	
	Ver. θ_{Y+}	U	23	-	-	65	-		Center CR≥10	-
	θ_{Y-}			-	-	45	-			

Note:

(1) .Transmittance

Introduction

Transmittance (diffuse transmission factor) is a measure for the LCD panel transparency. The Light Source for this measurement is the accompanying LCD-module backlight system (LEDs, Lightguide...)

Measurement conditions:

Measuring Equipment	BM-7/CS-200
Measurement Point Diameter	3mm
Measurement Point Location	Active Area Center Point
Light source	LCD module backlight
Reflectance Plate	Reflectance Standard(cal. plate)
Test pattern	All pixels white
Contrast setting	Maximum

Measuring

procedure:

Transmittance:

The light source is located at the backside of the panel.

- 1, Measure the light source
- 2. Place the LCD panel in front of the light source. Measure the luminance on the LCD panel surface

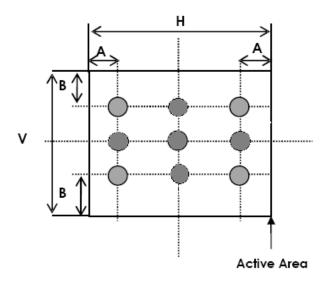
Definitions

$$\tau = \frac{Lv_{LCD-panel}}{Lv_{lightsource}} * 100\%$$

(2) Definition of Contrast Ratio (C/R): Ratio of gray max (Gmax) & gray min (Gmin) at the center point.

$$CR = \frac{G(Max)}{G(Min)}$$

Where


Gmax: Luminance with all pixels white Gmin: Luminance with all pixels black

(3). Surface luminance uniformity within panel

Measurement conditions:

Measuring Equipment	CS-200 // BM-7
Measurement Point Diameter	3mm // 1mm
Measurement Point Location	Active Area
Light Source	Transmissive Mode: Internal (Backlight)
Test pattern	White

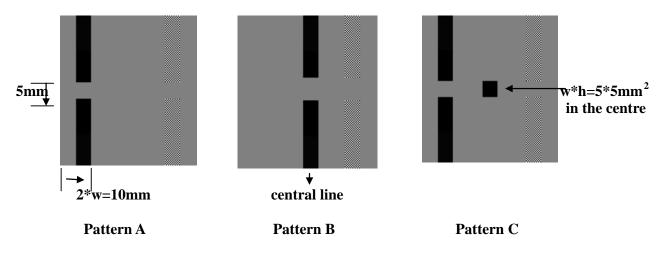
<u>Measuring procedure:</u> Measure the luminance Li with the points in figure 1.

Uniformity value (Lu):

$$Lu = \frac{\min(Li)}{\max(Li)} * 100\%$$

(4).CROSS-TALK

Introduction :


Crosstalk is an effect where the contrast of a display pixel is influenced by the state of the related pixels. A measure for this effect is the Cross Talk Value (CTV)

Measurement conditions:

Measuring Equipment	CS-200 // BM-7
Measurement Point Diameter	3mm // 1mm
Measurement Point Location	
Light Source	Transmissive Mode: Internal (Backlight)
Contrast setting	Maximum

•Test Pattern (valid for all greyscales):

W: The width of the rectangle in the following pictures;

• Definitions :

Cross Talk Value :

CTV = |LvA - LvB| / LvA * 100%

Where :

LvA: Luminance measured with the centre test point of pattern A

LvB: Luminance measured with the centre test point of pattern B.

• Measuring procedure :

Adaptation of the display to the highest contrast ratio (CR = LvA/LvC) as defined by the

test patterns and a test area of 14 x 14 dots.

Measurement of Luminance with test point A, B.

Determination of Crosstalk value (CTV)

(5). NTSC

Measurement conditions:

Measuring Equipment	LCD-5200
Measuring Point Diameter	3mm//1mm
Measuring point location	Active Area center point
Light source	Transmissive Mode: internal(Backlight)
	All Pixels White Red, Green, Blue, White:
Test pattern	Maximum color saturation
	(maximum gradation level)
Contrast setting	Maximum

Definitions

Panel color coordinates according the CIE color system (CIE 1931). In general, It is always requested to measure the X, Y and Z values. Here u', v' and L* are according CIE 1931:

$$x' = \frac{4 \cdot X}{X + 15 \cdot Y + 3 \cdot Z}$$
$$y' = \frac{9 \cdot Y}{X + 15 \cdot Y + 3 \cdot Z}$$
$$L^* = 116 \cdot \left(\frac{Y}{Y_n}\right)^{1/3} - 16$$

Color distance definition (maximum allowed color distance to specified typical color coordinate): $\Delta x' y' = \sqrt{\Delta x'^2 + \Delta y'^2}$

Where:

$$\Delta x' = Max |x'_{typ} - x'_{max}|, |x'_{typ} - x'_{min}|$$

$$\Delta y' = Max |y'_{typ} - y'_{max}|, |y'_{typ} - y'_{min}|$$

y'

$$\int_{B} \int_{a} \int_{a} \int_{a} R$$

Gamut definition: $F = \sqrt{s(-a)(-b)(-c)} 1000$

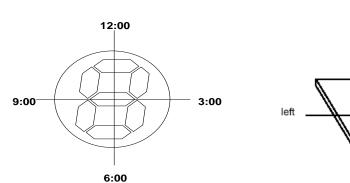
X'

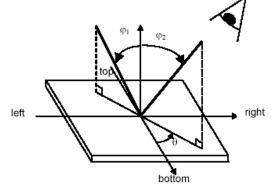
Where

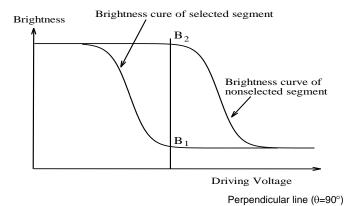
$$s = \frac{\Psi + b + c}{2}$$

$$a = \sqrt{x'_{blue} - x'_{red}^{2} + y'_{blue} - y'_{red}^{2}}$$

$$b = \sqrt{x'_{blue} - x'_{green}^{2} + y'_{blue} - y'_{green}^{2}}$$


$$c = \sqrt{x'_{red} - x'_{green}^{2} + y'_{red} - y'_{green}^{2}}$$


Color Gamut Ratio (NTSC) related to NTSC':


NTSC: =F (display)/F (NTSC') NTSC' primaries:

	x'	у'
Red	0.67	0.33
Green	0.21	0.71
Blue	0.14	0.08

F (NTSC') =74.42

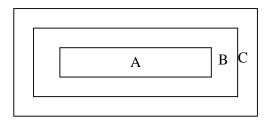
• INSPECTION CRITERION

a)

This specification is made to be used as the standard acceptance/rejection criteria for Color mobile phone LCM.

1 Sample plan

Sampling method shall be in accordance with MIL-STD-105D, inspection level II and based on:


Major defect: AQL 0.65

Minor defect: AQL 1.5

2. Inspection condition

Viewing distance for cosmetic inspection is about 30cm with bare eyes, and under an environment of 20~40W light intensity, all directions for inspecting the sample should be within 45° against perpendicular line.

3. Definition of inspection zone in LCD.

Zone A: character/Digit area

- Zone B: viewing area except Zone A (Zone A+ Zone B=minimum Viewing area)
- Zone C: Outside viewing area (invisible area after assembly in customer's product)

Fig.1 Inspection zones in an LCD.

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

4. Inspection standards

4.1 Major Defect

Item No	Items to be inspected	Inspection Standard						sification defects		
4.1.1	All functional defects	 No display Display abnormally Missing vertical , horizontal segment Short circuit 								
		5) Back-light no lig	ghting, flicke	ring and a	bnorm	nal lighting.	- N	Major		
4.1.2	Missing	Missing componen	t							
4.1.3	Outline dimension	Overall outline dim	iension beyo	nd the dra	wing i	s not allowed.				
	metic Defect									
Item No	Items to be inspected		Inspec	tion Stand	ard			Classification of defects		
	Clear Spots	For dark/white spot as $\Phi = \frac{(x+y)}{2}$	t, sizeΦ is de	fined		y x→				
	Black and	1.								
	white Spot defect	white Spot		ne Acceptable Qty						
		defect Pinhole,	, Size(mm)		A B		C	С		Minor
	Foreign Particle,	$\Phi \leq 0.1$		Ignore						
	Dirt under polarizer	$0.10 < \Phi \le 0.2$	2	3		Ignore	Ignore			
4.2.1		$0.2 < \Phi \le 0.3$;	2						
		Φ > 0.3		0						
	Dim Spots	2.								
		2. Zone		Acceptab	le Qty	,				
	Circle shaped and dim edged defects	Size(mm)	А	В		С				
		$\Phi \leq 0.2$	Ig	nore				Mir	nor	
		$0.20 < \Phi \le 0.40$			2		T			
		$0.40 < \Phi \le 0.60$		1		Ignore				
		0.60 < Φ		0						

4.2. Cosmetic Defect

Item No	Items to be inspected	Inspection Standard						Classification of defects	
		S	ize(mm)	· •		-	Qty		
	Line defect	L(Length)		W(Width)		Zone A B			
	Black line, White line,		W≤ 0.02			ore	С		
4.2.2	Foreign material	L≤ 3.0	$0.02 < W \le 0$.03	2	2		Minor	
	under polarizer,	L≤ 2.0	$0.03 < W \le 0$.05	1	-	Ignore		
			0.05 < W		Define as spot defect			_	
		If the Polarizer assembling or i defect of 4.2.2. If the Polarizer condition or so	in the operating scratch can be me special ang	condi seen o	ition, ju only in :	dge by t	he line rating		
		Size(r		mm) Accep		eptable Qty			
4.2.3	Polarizer scratch	L(Length)	L(Length) W(Width)		Zone			Minor	
	seraten	Tanana		A		C			
		Ignore	W≤ 0.03		Ignore				
		5.0 < L≤ 10.0	$0.03 < W \le 0.0$)5	2	Igno	ra		
		L≤ 5.0	$0.05 < W \le 0.0$	8	1	Igno			
			0.08 < W		0				
		Air bubbles bet	tween glass & po	olarizei	r				
		2. Zone		Accept	able Qty	7			
	Polarize Air bubble	Size(mm)	A	E	В	С			
4.2.4		$\Phi \leq 0.2$		Ignore					Minor
		All bubble	$0.20 < \Phi \le 0.3$	$0.20 < \Phi \le 0.30 \qquad 2$			Ianor	_	
		$0.30 < \Phi \le 0.5$	0	[Ignore			
		0.50 < Φ	0<Φ 0						

4.3. Cosmetic Defect

Item No	Items to be inspected	Inspection Standard	Classification of defects				
		(i) Chips on corner (i) Chips on corner X Y $Z\underline{X Y Z}\underline{S 0} \leq S DisregardNotes: S=contact pad lengthChips on the corner of terminal shall not be allowed to extend intothe ITO pad or expose perimeter seal.$					
4.3.5	Glass defect	(ii)Usual surface cracks X Y Z ≤ 3.0 <inner border="" disregard<="" line="" of="" seal="" td="" the=""><td>Minor</td></inner>	Minor				
		(iii) Crack Cracks tend to break are not allowed.	Major				
4.3.6	Parts alignment	 Not allow IC and FPC/heat-seal lead width is more than 50% beyond lead pattern. Not allow chip or solder component is off center more than 50% of the pad outline. 	Minor				
4.3.7	SMT	According to the <acceptability assemblies="" electronic="" of=""> IPC-A-610C class 2 standard. Component missing or function defect are Major defect, the others are Minor defect.</acceptability>					

♦ PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

(1) The display panel is made of glass and polarizer. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.

(2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.

(3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).

(4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizer's with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.

(5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents

- Isopropyl alcohol

- Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

(6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.

- Water
- Ketone
- Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

(7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

(8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.

(9) Do not attempt to disassemble or process the LCD module.

(10) NC terminal should be open. Do not connect anything.

(11) If the logic circuit power is off, do not apply the input signals.

(12) Electro-Static Discharge Control, Since this module uses a CMOS LSI, the same careful

attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.

- Tools required for assembling, such as soldering irons, must be properly grounded. make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.

- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential

- The LCD module is coated with a film to protect the display surface. Exercise care when

peeling off this protective film since static electricity may be generated

(13) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- Do not alter, modify or change the shape of the tab on the metal frame.

- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

- Do not damage or modify the pattern writing on the printed circuit board.

- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.

- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.

- Do not drop, bend or twist LCM.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

(1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.

(2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C.

(3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped).

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

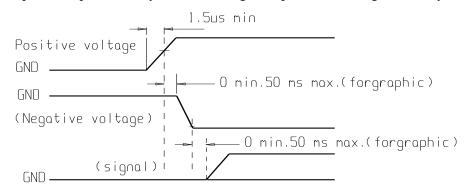
- Exposed area of the printed circuit board.

-Terminal electrode sections.

Precautions for Operation

(1) Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.

(2) It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life. An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.


(3) Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operating temperature.

(4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.

(5) A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature,50% RH or less is required.

(6) Input each signal after the positive/negative voltage becomes stable.

(7) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

Safety

(1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.

(2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Limited Warranty

Unless agreed between Shelly Associates Inc. and customer, Shelly Associates Inc. will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with Shelly Associates Inc. acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to Shelly Associates Inc.within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Shelly Associates is limited to repair and/or replacement on the terms set forth above. Shelly Associates Inc. will not be responsible for any subsequent or consequential events.