

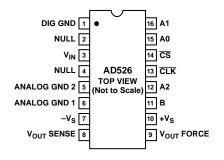
Software Programmable Gain Amplifier

AD526

FEATURES

Digitally Programmable Binary Gains from 1 to 16 Two-Chip Cascade Mode Achieves Binary Gain from 1 to 256 Gain Error: 0.01% Max, Gain = 1, 2, 4 (C Grade) 0.02% Max, Gain = 8, 16 (C Grade) 0.5 ppm/°C Drift Over Temperature **Fast Settling Time** 10 V Signal Change: 0.01% in 4.5 µs (Gain = 16) Gain Change: 0.01% in 5.6 µs (Gain = 16) Low Nonlinearity: ±0.005% FSR Max (J Grade) **Excellent DC Accuracy:** Offset Voltage: 0.5 mV Max (C Grade) Offset Voltage Drift: 3 µV/°C (C Grade) **TTL-Compatible Digital Inputs**

PRODUCT DESCRIPTION


The AD526 is a single-ended, monolithic software programmable gain amplifier (SPGA) that provides gains of 1, 2, 4, 8 and 16. It is complete, including amplifier, resistor network and TTL-compatible latched inputs, and requires no external components.

Low gain error and low nonlinearity make the AD526 ideal for precision instrumentation applications requiring programmable gain. The small signal bandwidth is 350 kHz at a gain of 16. In addition, the AD526 provides excellent dc precision. The FET-input stage results in a low bias current of 50 pA. A guaranteed maximum input offset voltage of 0.5 mV max (C grade) and low gain error (0.01%, G = 1, 2, 4, C grade) are accomplished using Analog Devices' laser trimming technology.

To provide flexibility to the system designer, the AD526 can be operated in either latched or transparent mode. The force/sense configuration preserves accuracy when the output is connected to remote or low impedance loads.

The AD526 is offered in one commercial (0°C to +70°C) grade, J, and three industrial grades, A, B and C, which are specified from -40° C to $+85^{\circ}$ C. The S grade is specified from -55° C to $+125^{\circ}$ C. The military version is available processed to MIL-STD 883B, Rev C. The J grade is supplied in a 16-lead plastic DIP, and the other grades are offered in a 16-lead hermetic side-brazed ceramic DIP.

PIN CONFIGURATION

APPLICATION HIGHLIGHTS

- 1. **Dynamic Range Extension for ADC Systems:** A single AD526 in conjunction with a 12-bit ADC can provide 96 dB of dynamic range for ADC systems.
- 2. Gain Ranging Preamps: The AD526 offers complete digital gain control with precise gains in binary steps from 1 to 16. Additional gains of 32, 64, 128 and 256 are possible by cascading two AD526s.

Temperature Range	Package Descriptions	Package Options
Commercial	16-Lead Plastic DIP	N-16
Industrial	16-Lead Cerdip	D-16
Industrial	16-Lead Cerdip	D-16
Industrial	16-Lead Cerdip	D-16
Military	16-Lead Cerdip	D-16
Military	16-Lead Cerdip	D-16
Military	16-Lead Cerdip	D-16
	Range Commercial Industrial Industrial Industrial Military Military	RangeDescriptionsCommercial16-Lead Plastic DIPIndustrial16-Lead CerdipIndustrial16-Lead CerdipIndustrial16-Lead CerdipMilitary16-Lead CerdipMilitary16-Lead CerdipMilitary16-Lead Cerdip

*Refer to official DESC drawing for tested specifications.

REV. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

$\label{eq:AD526} AD526 - SPECIFICATIONS \ (@V_{s} = \pm 15 \ V, \ R_{L} = 2 \ k\Omega \ \text{and} \ T_{A} = +25^{\circ}C \ \text{unless otherwise noted})$

		Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
1,	2, 4, 8, 1	6		1, 2, 4, 8,	16	1	, 2, 4, 8,	16	1,	2, 4, 8, 1	6	
		0.05			0.02			0.01			0.01	%
		0.05			0.03			0.02			0.01	%
		0.10			0.03			0.02			0.01	%
		0.15			0.07			0.04			0.02	%
		0.15			0.07			0.04			0.02	%
	0.5	2.0		0.5	2.0		0.5	2.0		0.5	2.0	ppm/°C
	0.5	2.0		0.5	2.0		0.5	2.0		0.5	2.0	ppm/°C
	0.5	3.0		0.5	3.0		0.5	3.0		0.5	3.0	ppm/°C
	0.5	5.0		0.5	5.0		0.5	5.0		0.5	5.0	ppm/°C
	1.0	5.0		1.0	5.0		1.0	5.0		1.0	5.0	ppm/°C
		0.06			0.03			0.02			0.015	%
		0.06			0.04			0.03			0.015	%
		0.12			0.04			0.03			0.015	%
		0.17			0.08			0.05			0.03	%
		0.17			0.08			0.05			0.03	%
		0.005			0.005			0.005			0.0035	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.01			0.01			0.01			0.007	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.001			0.001			0.001			0.001	% FSR
		0.001			0.001			0.001			0.001	% FSR
	0.4	1.5		0.25	0.7		0.25	0.5		0.25	0.5	mV
	011			0.25			0.25			0.20		
	5	20		3	10		3	10		3	10	μV/°C
	-			-			-			-		P
		2.0			1.0			0.8			0.8	mV
		2.0			1.00							
80			80			84			90			dB
	50	150		50	150		50	150		50	150	pА
<u> </u>	50	130		50	130		50	130		50	150	pri
±10			±10			±10			±10			V
	5			5			5			5		pF
±10	± 12		±10	± 12		±10	±12		±10	±12		v
												mA
15												mA
			10									Ω
	0.002			5.002			0.002			0.002		
	700			700			700			700		pF
_	*10 *10 *10	$ \begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 1.0\\ \end{array} $ $ \begin{array}{c} 0.4\\ 5\\ 80\\ \hline \pm 10\\ \pm 12\\ 5\\ \hline \pm 10\\ 15\\ 30\\ 0.002\\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} & 0.05 \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.001 \\ 0.001 \\ 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Model	Min	AD526J Typ	Max	Min	AD526A Typ	A Max	Al Min	D526B/S Typ	Max	A Min	AD5260 Typ	C Max	Units
		- 7 P			- 7 P			- 7 P			- 7 P		
NOISE, ALL GAINS													
Voltage Noise, RTI													
0.1 Hz to 10 Hz		3			3			3			3		μV p-p
Voltage Noise Density, RTI		-											
f = 10 Hz		70			70			70			70		nV√Hz
f = 100 Hz		60			60			60			60		nV\ Hz
f = 1 kHz		30			30			30			30		nV√Hz
f = 10 kHz		25			25			25			35		nV√Hz
DYNAMIC RESPONSE													
-3 dB Bandwidth (Small Signal)													
G = 1		4.0			4.0			4.0			4.0		MHz
G = 2		2.0			2.0			2.0			2.0		MHz
G = 4		1.5			1.5			1.5			1.5		MHz
G = 8		0.65			0.65			0.65			0.65		MHz
G = 16		0.35			0.35			0.35			0.35		MHz
Signal Settling Time to 0.01%													
$(\Delta V_{OUT} = \pm 10 \text{ V})$													
G = 1		2.1	4		2.1	4		2.1	4		2.1	4	μs
G = 2		2.5	5		2.5	5		2.5	5		2.5	5	μs
G = 4		2.7	5		2.7	5		2.7	5		2.7	5	μs
G = 8		3.6	7		3.6	7		3.6	7		3.6	7	μs
G = 16		4.1	7		4.1	7		4.1	7		4.1	7	μs
Full Power Bandwidth			•			-						•	p
G = 1, 2, 4		0.10			0.10			0.10			0.10		MHz
G = 1, 2, 1 G = 8, 16		0.35			0.35			0.35			0.35		MHz
Slew Rate		0.55			0.55			0.55			0.55		
G = 1, 2, 4	4	6		4	6		4	6		4	6		V/µs
G = 1, 2, 4 G = 8, 16	18	0 24		4 18	24		18	24		4 18	24		V/µs V/µs
	10	21		10	24		10	21		10	21		v/µs
DIGITAL INPUTS													
$(T_{MIN} \text{ to } T_{MAX})$													
Input Current ($V_H = 5 V$)	60	100	140	60	100	140	60	100	140	60	100	140	μA
Logic "1"	2		6	2		6	2		6	2		6	V
Logic "0"	0		0.8	0		0.8	0		0.8	0		0.8	V
TIMING ¹													
$(V_L = 0.2 \text{ V}, V_H = 3.7 \text{ V})$													
A0, A1, A2													
T _C	50			50			50			50			ns
T _s	30			30			30			30			ns
$T_{\rm H}$	30			30			30			30			ns
В													
T _c	50			50			50			50			ns
Ts	40			40			40			40			ns
T_{H}	10			10			10			30			ns
TEMPERATURE RANGE	1												
Specified Performance	0		+70	-40		+85	-40/-55		+85/+125	-40		+85	°C
-	-65		+70	-40 -65		+85	-40/-55		+85/+125	-40 -65		+85 +150	°C
Storage	-05		+125	-05		+150	-05		+150	-05		+150	<u>.</u>
POWER SUPPLY													
Operating Range	±4.5		±16.5	±4.5		±16.5	±4.5		±16.5	±4.5		±16.5	V
Positive Supply Current		10	14		10	14		10	14		10	14	mA
Negative Supply Current		10	13		10	13		10	13		10	13	mA
PACKAGE OPTIONS													
Plastic (N-16)	AT	D526JN											
Ceramic DIP (D-16)				AD526AD		AD526BD AD526SD			AD526CD				
	1				<u>-</u>		· · · · · · · · · · · · · · · · · · ·		26SD/883B	1			1

NOTES

 1 Refer to Figure 25 for definitions. FSR = Full Scale Range = 20 V. RTI = Referred to Input.

Specifications subject to change without notice. Specifications shown in **boldface** are tested on all production units at final electrical test. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

AD526–Typical Performance Characteristics

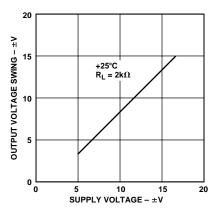


Figure 1. Output Voltage Swing vs. Supply Voltage, G = 16

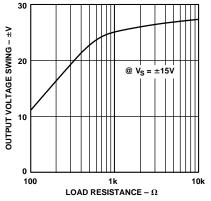


Figure 2. Output Voltage Swing vs. Load Resistance

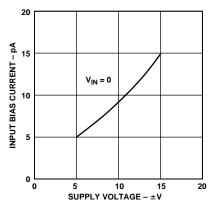
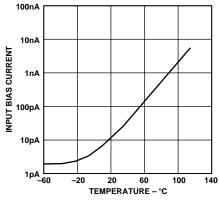



Figure 3. Input Bias Current vs. Supply Voltage

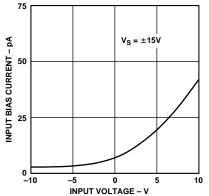


Figure 5. Input Bias Current vs. Input Voltage

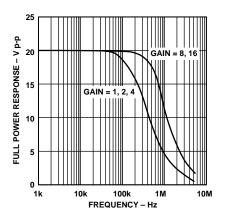


Figure 7. Large Signal Frequency Response

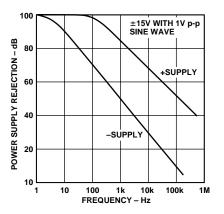


Figure 8. PSRR vs. Frequency

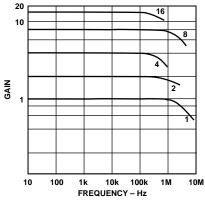


Figure 6. Gain vs. Frequency

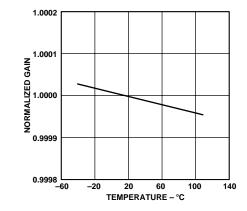
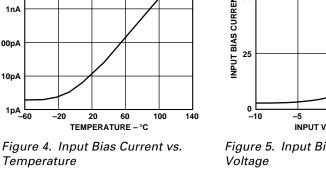



Figure 9. Normalized Gain vs. Temperature, Gain = 1

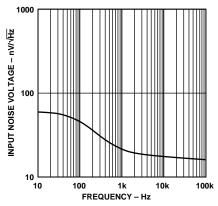


Figure 10. Noise Spectral Density

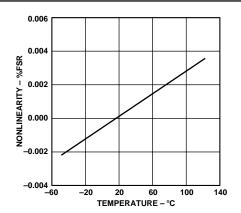


Figure 11. Nonlinearity vs. Temperature, Gain = 1

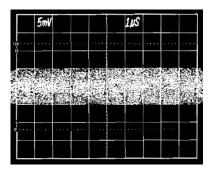


Figure 12. Wideband Output Noise, G = 16 (Amplified by 10)

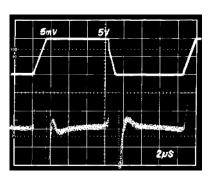


Figure 13. Large Signal Pulse Response and Settling Time,* G = 1

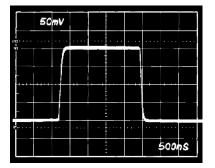


Figure 14. Small Signal Pulse Response, G = 1

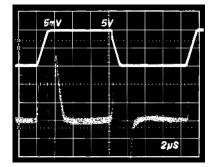


Figure 15. Large Signal Pulse Response and Settling Time,* G = 2

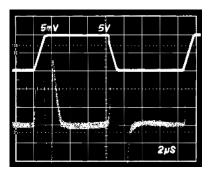


Figure 16. Small Signal Pulse Response, G = 2

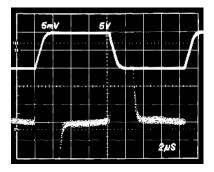


Figure 17. Large Signal Pulse Response and Settling Time,* G = 4

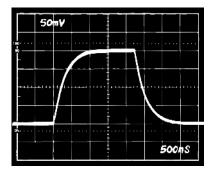


Figure 18. Small Signal Pulse Response, G = 4

*For Settling Time Traces, 0.01% = 1/2 Vertical Division

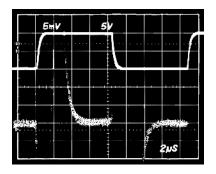


Figure 19. Large Signal Pulse Response and Settling Time,* G = 8

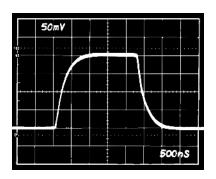


Figure 20. Small Signal Pulse Response, G = 8

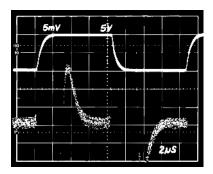


Figure 21. Large Signal Pulse Response and Settling Time,* G = 16

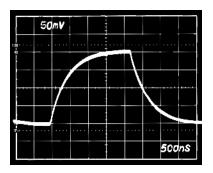


Figure 22. Small Signal Pulse Response, Gain = 16

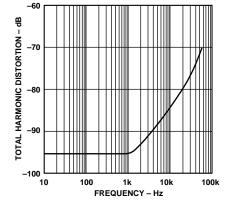


Figure 23. Total Harmonic Distortion vs. Frequency Gain = 16

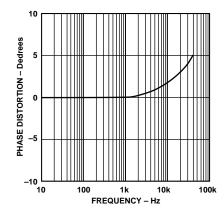


Figure 24. Phase Distortion vs. Frequency, Gain = 16

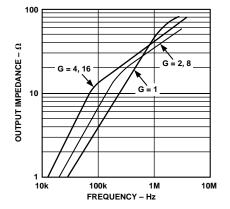


Figure 25. Output Impedance vs. Frequency

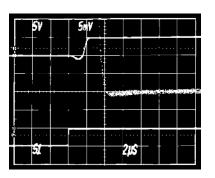


Figure 26. Gain Change Settling Time,** Gain Change: 1 to 2

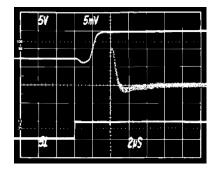
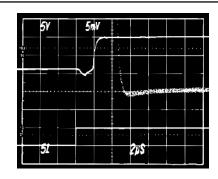



Figure 27. Gain Change Settling Time,** Gain Change 1 to 4

*For Settling Time Traces, 0.01% = 1/2 Vertical Division

**Scope Traces are: Top: Output Transition; Middle: Output Settling; Bottom: Digital Input.

5V 5mV

Figure 28. Gain Change Settling Time,* Gain Change 1 to 8

Figure 29. Gain Change Settling Time,* Gain Change 1 to 16

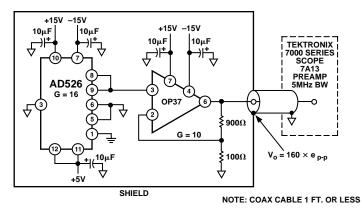


Figure 30. Wideband Noise Test Circuit

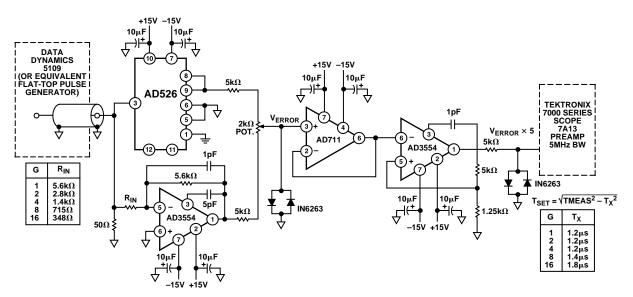


Figure 31. Settling Time Test Circuit

*Scope Traces are: Top: Output Transition Middle: Output Settling Bottom: Digital Input

THEORY OF OPERATION

The AD526 is a complete software programmable gain amplifier (SPGA) implemented monolithically with a drift-trimmed BiFET amplifier, a laser wafer trimmed resistor network, JFET analog switches and TTL compatible gain code latches.

A particular gain is selected by applying the appropriate gain code (see Table I) to the control logic. The control logic turns on the JFET switch that connects the correct tap on the gain network to the inverting input of the amplifier; all unselected JFET gain switches are off (open). The "on" resistance of the gain switches causes negligible gain error since only the amplifier's input bias current, which is less than 150 pA, actually flows through these switches.

The AD526 is capable of storing the gain code, (latched mode), B, A0, A1, A2, under the direction of control inputs $\overline{\text{CLK}}$ and $\overline{\text{CS}}$. Alternatively, the AD526 can respond directly to gain code changes if the control inputs are tied low (transparent mode).

For gains of 8 and 16, a fraction of the frequency compensation capacitance (C1 in Figure 32) is automatically switched out of the circuit. This increases the amplifier's bandwidth and improves its signal settling time and slew rate.

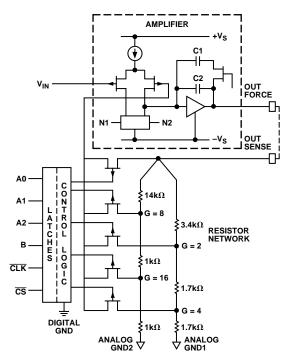


Figure 32. Simplified Schematic of the AD526

TRANSPARENT MODE OF OPERATION

In the transparent mode of operation, the AD526 will respond directly to level changes at the gain code inputs (A0, A1, A2) if B is tied high and both \overline{CS} and \overline{CLK} are allowed to float low.

After the gain codes are changed, the AD526's output voltage typically requires $5.5 \ \mu$ s to settle to within 0.01% of the final value. Figures 26 to 29 show the performance of the AD526 for positive gain code changes.

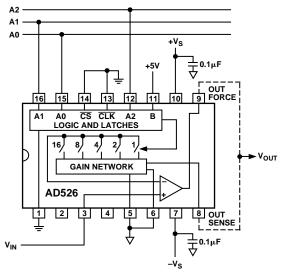


Figure 33. Transparent Mode

LATCHED MODE OF OPERATION

The latched mode of operation is shown in Figure 34. When either \overline{CS} or \overline{CLK} go to a Logic "1," the gain code (A0, A1, A2, B) signals are latched into the registers and held until both \overline{CS} and \overline{CLK} return to "0." Unused \overline{CS} or \overline{CLK} inputs should be tied to ground. The \overline{CS} and \overline{CLK} inputs are functionally and electrically equivalent.



Figure 34. Latched Mode

TIMING AND CONTROL

Gain Code				Control	Condition	
A2	A1	A 0	В	$\overline{\text{CLK}} \ (\overline{\text{CS}} = 0)$	Gain	Condition
X	Х	Х	Х	1	Previous State	Latched
0	0	0	1	0	1	Transparent
0	0	1	1	0	2	Transparent
0	1	0	1	0	4	Transparent
0	1	1	1	0	8	Transparent
1	Х	Х	1	0	16	Transparent
Х	Х	Х	0	0	1	Transparent
Х	Х	Х	0	1	1	Latched
0	0	0	1	1	1	Latched
0	0	1	1	1	2	Latched
0	1	0	1	1	4	Latched
0	1	1	1	1	8	Latched
1	Х	Х	1	1	16	Latched

Table I. Logic Input Truth Table

NOTE: X = Don't Care.

The specifications on page 3, in combination with Figure 35, give the timing requirements for loading new gain codes.

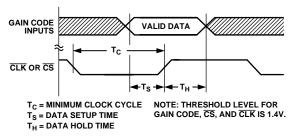


Figure 35. AD526 Timing

DIGITAL FEEDTHROUGH

With either \overline{CS} or \overline{CLK} or both held high, the AD526 gain state will remain constant regardless of the transitions at the A0, A1, A2 or B inputs. However, high speed logic transitions will unavoidably feed through to the analog circuitry within the AD526 causing spikes to occur at the signal output.

This feedthrough effect can be completely eliminated by operating the AD526 in the transparent mode and latching the gain code in an external bank of latches (Figure 36).

To operate the AD526 using serial inputs, the configuration shown in Figure 36 can be used with the 74LS174 replaced by a serial-in/parallel-out latch, such as the 54LS594.

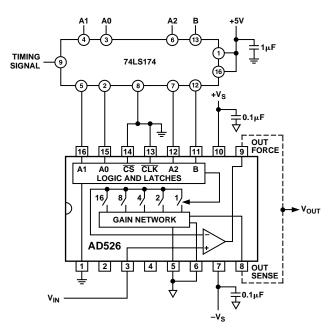


Figure 36. Using an External Latch to Minimize Digital Feedthrough

GROUNDING AND BYPASSING

Proper signal and grounding techniques must be applied in board layout so that specified performance levels of precision data acquisition components, such as the AD526, are not degraded.

As is shown in Figure 37, logic and signal grounds should be separate. By connecting the signal source ground locally to the AD526 analog ground Pins 5 and 6, gain accuracy of the AD526 is maintained. This ground connection should not be corrupted by currents associated with other elements within the system.

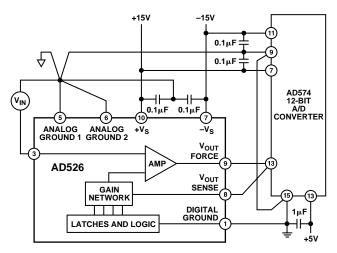


Figure 37. Grounding and Bypassing

Utilizing the force and sense outputs of the AD526, as shown in Figure 38, avoids signal drops along etch runs to low impedance loads.

Table II. Logic Table for Figure 38

V _{OUT} /V _{IN}	A2	A1	A0
1	0	0	0
2	0	0	1
4	0	1	0
8	0	1	1
16	1	0	0
32 64	1	0	1
64	1	1	0
128	1	1	1

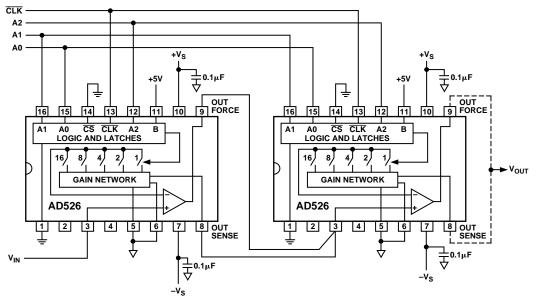


Figure 38. Cascaded Operation

OFFSET NULLING

Input voltage offset nulling of the AD526 is best accomplished at a gain of 16, since the referred-to-input (RTI) offset is amplified the most at this gain and therefore is most easily trimmed. The resulting trimmed value of RTI voltage offset typically varies less than 3 μ V across all gain ranges.

Note that the low input current of the AD526 minimizes RTI voltage offsets due to source resistance.

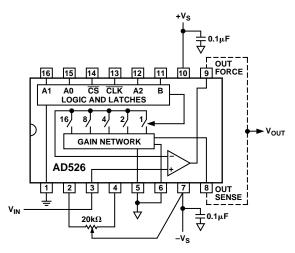


Figure 39. Offset Voltage Null Circuit

OUTPUT CURRENT BOOSTER

The AD526 is rated for a full ± 10 V output voltage swing into 2 k Ω . In some applications, the need exists to drive more current into heavier loads. As shown in Figure 40, a high current booster may be connected "inside the loop" of the SPGA to provide the required current boost without significantly degrading overall performance. Nonlinearities, offset and gain inaccuracies of the buffer are minimized by the loop gain of the AD526 output amplifier.

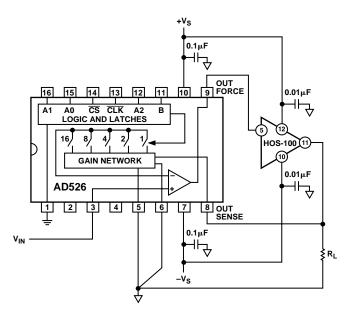


Figure 40. Current Output Boosting

CASCADED OPERATION

A cascade of two AD526s can be used to achieve binarily weighted gains from 1 to 256. If gains from 1 to 128 are needed, no additional components are required. This is accomplished by using the B pin as shown in Figure 38. When the B pin is low, the AD526 is held in a unity gain stage independent of the other gain code values.

OFFSET NULLING WITH A D/A CONVERTER

Figure 41 shows the AD526 with offset nulling accomplished with an 8-bit D/A converter (AD7524) circuit instead of the potentiometer shown in Figure 39. The calibration procedure is the same as before except that instead of adjusting the potentiometer, the D/A converter corrects for the offset error. This calibration circuit has a number of benefits in addition to eliminating the trimpot. The most significant benefit is that calibration can be under the control of a microprocessor and therefore can be implemented as part of an autocalibration scheme. Secondly, dip switches or RAM can be used to hold the 8-bit word after its value has been determined. In Figure 42 the offset null sensitivity, at a gain of 16, is 80 μ V per LSB of adjustment, which guarantees dc accuracy to the 16-bit performance level.

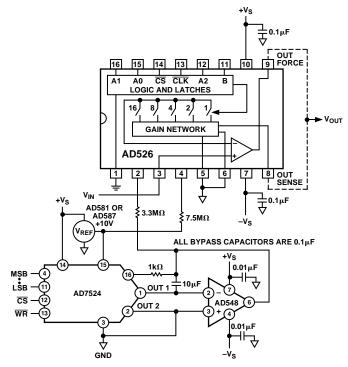


Figure 41. Offset Nulling Using a DAC

FLOATING-POINT CONVERSION

High resolution converters are used in systems to obtain high accuracy, improve system resolution or increase dynamic range. There are a number of high resolution converters available with throughput rates of 66.6 kHz that can be purchased as a single component solution; however in order to achieve higher throughput rates, alternative conversion techniques must be employed. A floating point A/D converter can improve both throughput rate and dynamic range of a system.

In a floating point A/D converter (Figure 42), the output data is presented as a 16-bit word, the lower 12 bits from the A/D converter form the mantissa and the upper 4 bits from the digital signal used to set the gain form the exponent. The AD526 programmable gain amplifier in conjunction with the comparator circuit scales the input signal to a range between half scale and full scale for the maximum usable resolution.

The A/D converter diagrammed in Figure 42 consists of a pair of AD585 sample/hold amplifiers, a flash converter, a five-range programmable gain amplifier (the AD526) and a fast 12-bit A/D converter (the AD7572). The floating-point A/D converter achieves its high throughput rate of 125 kHz by overlapping the acquisition time of the first sample/hold amplifier and the settling time of the AD526 with the conversion time of the A/D converter. The first sample/hold amplifier holds the signal for the flash autoranger, which determines which binary quantum the input falls within, relative to full scale. Once the AD526 has settled to the appropriate level, then the second sample/hold amplifier can be put into hold which holds the amplified signal while the AD7572 perform its conversion routine. The acquisition time for the AD585 is 3 μ s, and the conversion time for the AD7572 is 5 μ s for a total of 8 μ s, or 125 kHz. This performance relies on the fast settling characteristics of the AD526 after the flash autoranging (comparator) circuit quantizes the input signal. A 16-bit register holds the 3-bit output from the flash autoranger and the 12-bit output of the AD7572.

The A/D converter in Figure 42 has a dynamic range of 96 dB. The dynamic range of a converter is the ratio of the full-scale input range to the LSB value. With a floating-point A/D converter the smallest value LSB corresponds to the LSB of the monolithic converter divided by the maximum gain of the PGA. The floating point A/D converter has a full-scale range of 5 V, a maximum gain of 16 V/V from the AD526 and a 12-bit A/D converter; this produces:

LSB = ([FSR/2^N]/Gain) = ([5 V/4096]/16) = 76 μ V. The dynamic range in dBs is based on the log of the ratio of the full-scale input range to the LSB; dynamic range = 20 log (5 V/76 μ V) = 96 dB.

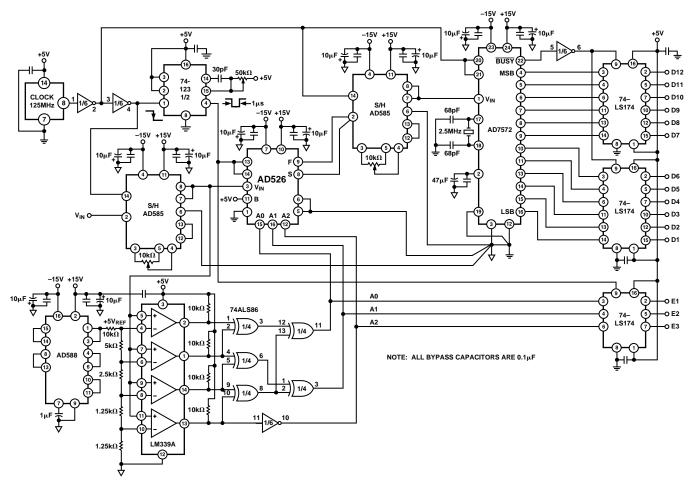


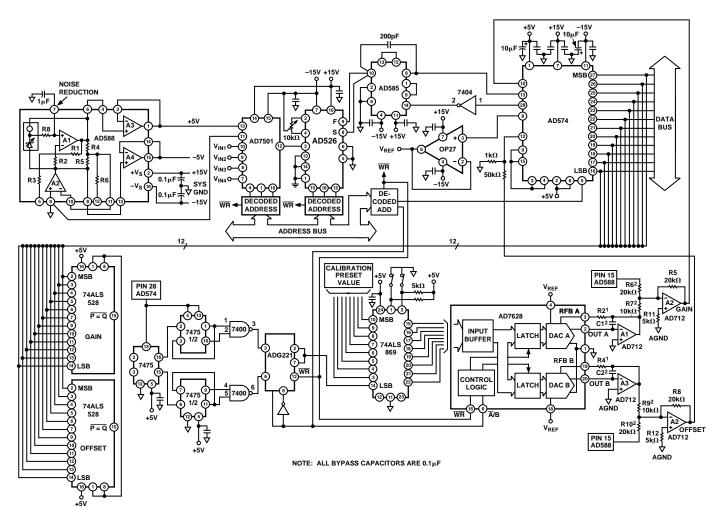
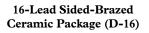
Figure 42. Floating-Point A/D Converter

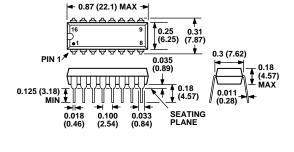
HIGH ACCURACY A/D CONVERTERS

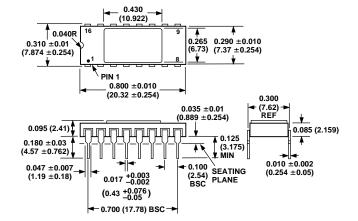
Very high accuracy and high resolution floating-point A/D converters can be achieved by the incorporation of offset and gain calibration routines. There are two techniques commonly used for calibration, a hardware circuit as shown in Figure 43 and/or a software routine. In this application the microprocessor is functioning as the autoranging circuit, requiring software overhead; therefore, a hardware calibration technique was applied which reduces the software burden. The software is used to set the gain of the AD526. In operation the signal is converted, and if the MSB of the AD574 is not equal to a Logical 1, the gain is increased by binary steps, up to the maximum gain. This maximizes the full-scale range of the conversion process and insures a wide dynamic range.

The calibration technique uses two point correction, offset and gain. The hardware is simplified by the use of programmable magnitude comparators, the 74ALS528s, which can be "burned" for a particular code. In order to prevent under or over range

hunting during the calibration process, the reference offset and gain codes should be different from the endpoint codes. A calibration cycle consists of selecting whether gain or offset is to be calibrated then selecting the appropriate multiplexer channel to apply the reference voltage to the signal channel. Once the operation has been initiated, the counter, a 74ALS869, drives the D/A converter in a linear fashion providing a small correction voltage to either the gain or offset trim point of the AD574. The output of the A/D converter is then compared to the value preset in the 74ALS528 to determine a match. Once a match is detected, the 74ALS528 produces a low going pulse which stops the counter. The code at the D/A converter is latched until the next calibration cycle. Calibration cycles are under the control of the microprocessor in this application and should be implemented only during periods of converter inactivity.


Figure 43. High Accuracy A/D Converter


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Plastic DIP Package (N-16)

