

MG74K/75K/76K 0.15µm Customer Structured Arrays

March 2003

Oki Semiconductor

CONTENTS

Description	1
Features	1
MG74K/75K/76K Family Listing	2
Array Architecture MG74K/75K/76K CSA Layout Methodology	3 4
Electrical Characteristics	6
Macro Library Macrocells for Driving Clock Trees	. 10 11
OKI Advanced Design Center Cad Tools	. 12
Design Process Automatic Test Pattern Generation Floorplanning Design Flow IEEE JTAG Boundary Scan Support	. 13 14 14 16
Package Options	. 17

Oki Semiconductor MG74K/75K/76K

0.15µm Customer Structured Arrays

DESCRIPTION

Oki's 0.15µm Application-Specific Integrated Circuit (ASIC) products are available in Customer Structured Array (CSA) architectures. The CSA-based MG74K/75K/76K series uses a six-layer metal process on 0.15µm drawn CMOS technology.

The MG74K/75K/76K series uses four, five, and six layer metal, respectively.

The 0.15µm CSA family provides significant performance, density, and power improvement over previous 0.16µm technologies. Using an innovative 4-transistor cell structure, the MG74K/75K/76K offers a 30% speed increase, consumes 25% less power, and has 20% higher density than traditional cell designs. The 0.15µm CSA family operates using 1.5V VDD core with optimized 3.3V I/O and 5V tolerant I/O buffers. The 4-, 5-, and 6-layer metal MG74K/75K/76K series contains 21 base arrays, offering up to 868 I/O pads and over 25M raw gates. These CSA sizes are designed to fit the most popular quad flat pack (QFP), low profile QFPs (LQFPs), thin QFPs (TQFPs), thin fine pitch land grid array (TFLGAs), low profile fine pitch ball grid array (LFBGAs), and plastic ball grid array (PBGA) packages.

The MG74K/75K/76K series is ideally suited for memory-intensive ASICs and high volume designs where fine tuning of package size produces significant cost and/or real-estate savings.

FEATURES

- 0.15µm drawn 4-, 5-, and 6-layer metal CMOS
- Optimized 1.5V core
- Optimized 3.3V I/O
- Optimized 5V Tolerant I/O
- 28-ps typical gate propagation delay (for a 4xdrive inverter gate with a fanout of 2 and 0 mm of wire, operating at 1.5V)
- Over 25M raw gates and 868 I/O pads using 60µm staggered I/O
- User-configurable I/O with V_{SS}, V_{DD}, CMOS, TTL, and 2- to 24-mA options
- Slew-rate-controlled outputs for low-radiated noise
- Clock tree cells that reduce the maximum skew for clock signals

- Low 44 nW/MHz/gate power dissipation
- User-configurable single- and dual-port memories
- Specialized IP cores and macrocells including 32-bit ARM CPU, phase-locked loop (PLL), and peripheral component interconnect (PCI) cells
- Floorplanning for front-end simulation, backend layout controls, and link to synthesis
- Joint Test Action Group (JTAG) boundary scan and scan path Automatic Test Pattern Generation (ATPG)
- Built-in Self Test (BIST) for memory test
- Support for popular CAE systems including Cadence, Model Technology, Inc. (MTI), and Synopsys

MG74K/75K/76K FAMILY LISTING

CSA Base	No. of	No. of	MG74K Family	MG75K Family	MG76K Family
Array	Pads	Raw Gates	4LM Usable Gates	5LM Usable Gates	6LM Usable Gates
MG7xKB02	68	221,184	161,464	188,006	205,701
MG7xKB04	108	481,664	320,307	370,881	409,414
MG7xKB06	148	848,256	517,436	602,262	661,640
MG7xKB08	188	1,317,888	738,017	869,806	955,469
MG7xKB10	228	1,890,560	992,544	1,153,242	1,304,486
MG7xKB12	268	2,555,840	1,265,141	1,482,387	1,686,854
MG7xKB14	308	3,351,040	1,574,989	1,843,072	2,111,155
MG7xKB16	348	4,233,600	1,862,784	2,222,640	2,540,160
MG7xKB18	388	5,204,288	2,185,801	2,628,165	2,992,466
MG7xKB20	428	6,291,456	2,516,582	3,051,356	3,491,758
MG7xKB22	468	7,481,664	2,843,032	3,478,974	4,040,099
MG7xKB24	508	8,774,912	3,202,843	3,948,710	4,606,829
MG7xKB26	548	10,150,400	3,552,640	4,415,424	5,176,704
MG7xKB28	588	11,681,728	3,913,379	4,906,326	5,782,455
MG7xKB30	628	13,284,864	4,251,156	5,380,370	6,376,735
MG7xKB32	668	14,991,040	4,572,267	5,846,506	7,045,789
MG7xKB34	708	16,773,504	4,948,184	6,373,932	7,631,944
MG7xKB36	748	18,684,288	5,325,022	6,819,765	8,314,508
MG7xKB38	788	20,698,112	5,691,981	7,347,830	9,003,679
MG7xKB40	828	22,783,808	6,037,709	7,860,414	9,683,118
MG7xKB42	868	25,051,264	6,388,072	8,392,173	10,396,275

2 Oki Semiconductor

ARRAY ARCHITECTURE

The primary components of a 0.15µm MG74K/75K/76K circuit include:

- I/O base cells
- 60µm pad pitch
- Configurable I/O pads for V_{DD}, V_{SS}, or I/O (optimized 3.3V I/O, 5V tolerant I/O)
- V_{DD} and V_{SS} pads dedicated to wafer probing
- Separate power bus for output buffers
- Separate power bus for internal core logic and input buffers
- Core base cells containing N-channel and P-channel pairs, arranged in column of gates
- Isolated gate structure for reduced input capacitance and increased routing flexibility
- Innovative 4-transistor core cell architecture, licensed from In-Chip Systems, Inc

Each array has 24 dedicated corner pads for power and ground use during wafer probing, with six pads per corner. The arrays also have separate power rings for the internal core functions (V_{DDC} and V_{SSC}) and output drive transistors (V_{DDO} and V_{SSO}).

Figure 1. MG76K Array Architecture

MG74K/75K/76K CSA Layout Methodology

The procedure to design, place, and route a CSA is as follows.

- 1. Select suitable base array frame from the available predefined sizes. To select a base array size:
 - Identify macrocell functions required and minimum array size to hold macrocell functions.
 - Add together all the area occupied by the required random logic and macrocells and select the optimum array.
- 2. Make a floor plan for the design's megacells.
 - Oki Design Center engineers verify the master slice and review simulation.
 - Oki Design Center or customer engineers floorplan the array using Oki's supported floorplanner or Cadence DP3 and customer performance specifications.
 - Using Oki CAD software, Design Center engineers remove the SOG transistors and replace them with diffused memory macrocells to the customer's specifications.

Figure 2 shows a base array after placement of the optimized memory macrocells.

Figure 2. Optimized Memory Macrocell Floor Plan

- 3. Place and route logic into the array transistors.
 - Oki Design Center engineers use layout software and customer performance specifications to connect the random logic and optimized memory macrocells.

Figure 3 marks the area in which placement and routing is performed with cross hatching.

Figure 3. Random Logic Place and Route

ELECTRICAL CHARACTERISTICS

Para	meter	Symbol	Conditions	Rated Value	Unit	
Power cupply veltage	Core	V _{DDCORE}	-	-0.3 ~ +2.0		
Power supply vollage	I/O	V _{DDIO}	-	-0.3 ~ +4.6	_	
Power supply voltage Input voltage Output voltage Input current ^[2] Output current	(Normal Buffer)		-	-0.3 ~ V _{DDIO} +0.3	_	
Input voltage	(5)/ Toloropt Puffor)	VI	V _{DDIO} = +3.0 ~ +3.6V	-0.3 ~ +6.0		
	(SV TOIEIAIIL Bullet)		V _{DDIO} < +3.0V	-0.3 ~ V _{DDIO} +0.3		
Output voltage Input current ^[2]	(Normal Buffer)		-	-0.3 ~ V _{DDIO} +0.3	_	
Output voltage	(E) (Toloropt Buffor)	Vo	V _{DDIO} = +3.0 ~ +3.6V	-0.3 ~ +6.0		
In mode a summer of [2]	(5V TOIEIAIT BUILET)		V _{DDIO} < +3.0V	-0.3 ~ V _{DDIO} +0.3		
Input current ^[2]	-	I _I	-	-10 ~ +10		
Power supply voltage Input voltage Output voltage Input current ^[2] Output current Storage temperature	2mA buffer		-	-8 ~ +8		
	4mA buffer		-	-16 ~ +16		
	6mA buffer		-	-24 ~ + 24		
	8mA buffer		-	-32 ~ + 32		
Output current	10mA buffer	۱ ₀	-	-42 ~ +42		
	12mA buffer		-	-42 ~ +42		
	14mA buffer		-	-42 ~ +42		
	16mA buffer		-	-42 ~ +42	1	
	24mA buffer		-	-42 ~ +42	1	
Storage temperature	-	T _{stg}	-	-65 ~ +150	°C	

Absolute Maximum Ratings ($V_{SS} = 0 V, T_J = 25^{\circ}C$)^[1]

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions in the other specifications of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 Do not drive inputs while V_{DD} is low or 0V. Driving any pin with a positive signal while V_{DD} is low or 0V can result in a current surge through the ESD protection diode and cause device failure.

Recommended Operating Conditions (V_{SS} = 0 V)

Parameter	Symbol	Min	Тур.	Max	Unit	
Power supply voltage	Core	V _{DDCORE}	+1.35	+1.5	+1.65	V
Fower supply voltage	I/O	V _{DDIO}	+3.0	+3.3	+3.6	v
Junction temperature		T _j ^[1]	-40	-	+85	°C
Input rise time/fall time		t _r , t _f	-	2	20	ns

1. Maximum junction temperature (T_j max) must be equal to or less than 125°C. If T_j is over 85°C, please refer to the DC Characteristics table with the tempature range $T_j = -40^{\circ}$ C to +125°C.

$ \begin{array}{ $				R	ated Value	•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Conditions	Min.	Typ. ^[1]	Max.	Unit
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		V	TTL input (normal)	2.0	-	V _{DDIO} + 0.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	High-level liput voltage	VIH	TTL input (5V Tolerant)	2.0	-	5.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		V	TTL input (normal)	-0.3	-	0.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Low-level input voltage	[∨] IL	TTL input (5V Tolerant)	-0.3	-	0.8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TTL- level Schmitt	V _{t+}	TTL pormal input	-	-	2.1	
$ \frac{\text{Threshold voltage}}{\text{High-level output voltage}}{\text{(Normal buffer)}} \underbrace{\Delta V_{t}}_{V_{t}} \underbrace{Vt + \cdot Vt \cdot}_{V_{t}} \underbrace{0.25}_{0.25} \underbrace{-}_{-}_{-}_{0.15}_{0.15} \underbrace{1_{OH} = \cdot 100 \ \mu A}_{0.15, \cdot 14, \cdot 16, \cdot 24 \ m A}_{0.24} \underbrace{-}_{-}_{-}_{0.16}_{0.16, \cdot 21, \cdot 14, \cdot 16, \cdot 24 \ m A}_{0.24} \underbrace{-}_{-}_{-}_{0.16, \cdot 21, \cdot 14, \cdot 16, \cdot 24 \ m A}_{0.16, \cdot 16, \cdot 21, \cdot 14, \cdot 16, \cdot 24 \ m A}_{0.16, \cdot 16, \cdot 21, \cdot 14, \cdot 16, \cdot 24 \ m A}_{0.16, \cdot 16, \cdot 1$	Trigger input buffer	V _t -	TTE norman input	0.7	-	-	
$ \begin{array}{ c c c c c c } \hline High-level output voltage (Normal buffer) \\ \hline High-level output voltage (SV Tolerant buffer) \\ \hline U_{OH} = -100 \mu A & V_{DDIO} - 0.2 & - & - & - \\ \hline U_{OH} = -100 \mu A & V_{DDIO} - 0.2 & - & - & - \\ \hline U_{OH} = -100 \mu A & V_{DDIO} - 0.2 & - & - & - \\ \hline U_{OH} = -100 \mu A & V_{DDIO} - 0.2 & - & - & - \\ \hline U_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA & 2.4 & - & - & - \\ \hline U_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA & 2.4 & - & - & - \\ \hline U_{OL} = 2, -4, -6, -8, -10, -12, -14, -16, -24 mA & 2.4 & - & - & 0.2 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA & - & - & 0.2 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA & - & - & 0.2 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA & - & - & 0.2 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.4 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.2 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.4 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.4 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.4 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.4 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 0.4 \\ \hline U_{OH} = -2, -4, -6, -8, -10, -1, - & - & 10 \\ \hline U_{H} = -2, -4, -6, -8, -10, -1, - & - & 10 \\ \hline U_{H} = -2, -4, -6, -8, -10, -1, - & - & - & 10 \\ \hline U_{H} = -2, -4, -6, -8, -10, -1, - & - & - & 10 \\ \hline U_{H} = -2, -4, -6, -8, -10, -1, - & - & - & - & 10 \\ \hline U_{H} = -2, -4, -6, -8, -10, - & - & - & - & - & 10 \\ \hline U_{H} = -2, -4, -6, -8, -10, - & - & - & - & - & - & - & - & - & - $	Threshold voltage	ΔV _t	Vt+ - Vt-	0.25	-	-	
$ \begin{array}{ c c c c c c } \hline (Normal buffer) & V_{OH} & I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OH} = -20 \ \muA & V_{DDIO} - 0.2 & - & - \\ \hline I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 \ mA & 2.4 & - & - \\ \hline I_{OL} = -100 \ \muA & - & - & 0.2 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 100 \ \muA & - & - & 0.2 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 \ mA & - & - & 0.4 \\ \hline I_{OL} = 100 \ \muA & - & - & 10 \\ \hline I_{OL} = 100 \ \muA & - & - & 10 \\ \hline I_{OL} = V_{DDIO} & - & - & 10 \\ \hline I_{H} = V_{DDIO} & 5000 \ P_{H} = V_{DDIO} & - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_{SS} & -10 \ - & - \\ \hline I_{OL} = V_$	High-level output voltage		I _{OH} = -100 μA	V _{DDIO} - 0.2	-	-	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Normal buffer)	Val	I _{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA	2.4	_	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	High-level output voltage	∣ ⊻он	I _{OH} = -100 μA	V _{DDIO} - 0.2	_	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(5V Tolerant buffer)		I _{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA	2.4	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Low-level output voltage		I _{OL} = 100 μA			0.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Normal buffer)	N.	I _{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 mA	-	-	0.4	
	Low-level output voltage	^v oL	I _{OL} = 100 μA	-	-	0.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(5V Tolerant buffer)		I _{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 mA	-	-	0.4	
$\begin{tabular}{ c c c c c c c c c c c } \hline (Normal buffer) & $I_{IH} = V_{DDIO} (50 k\Omega \ pull-down) & 10 & $-$ & 200 \\ \hline $V_{IH} = V_{DDIO} & $-$ & $-$ & 10 \\ \hline $V_{IH} = 5.5V$ & $-$ & $-$ & 10 \\ \hline $V_{IH} = 5.5V$ & $-$ & $-$ & 10 \\ \hline $V_{IH} = 5.5V$ & $-$ & $-$ & 10 \\ \hline $V_{IL} = V_{SS} & 10 & $-$ & $-$ & 10 \\ \hline $V_{IL} = V_{SS} (50 k\Omega \ pull-up) & $-$ 200 & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} (50 k\Omega \ pull-up) & $-$ 200 & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $0^{-1}O$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $V_{IL} = V_{SS} & $-$ & $-$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $V_{IL} = V_{SS} & $-$ & $-$ & $-$ & $-$ & $-$ \\ \hline $V_{IL} = V_{SS} & $-$ & $	High-level input current		$V_{IH} = V_{DDIO}$	-	-	10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Normal buffer)	 	$V_{IH} = V_{DDIO} (50 k\Omega \text{ pull-down})$	10	-	200	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	High-level input current	'IH	$V_{IH} = V_{DDIO}$	-	-	10	
$ \begin{array}{c c} Low-level input current \\ (Normal buffer) \end{array} & \begin{array}{c c} V_{IL} = V_{SS} & -10 & - & - \\ \hline V_{IL} = V_{SS} (50 \text{k} \Omega \text{ pull-up}) & -200 & - & -10 \\ \hline V_{IL} = V_{SS} & -10 & - & -10 \\ \hline V_{IL} = V_{SS} & -10 & - & - \end{array} \end{array} \\ \mu A \\ \end{array} $	(5V Tolerant buffer)		V _{IH} = 5.5V	-	-	10	
$\frac{(\text{Normal buffer})}{\text{Low-level input current}} \xrightarrow{(5V \text{ Tolerant buffer})} \text{I}_{\text{IL}} = V_{\text{SS}} (50 \text{k}\Omega \text{ pull-up}) \xrightarrow{-200} - \underbrace{-10}_{-10} \mu \text{A}$	Low-level input current		$V_{IL} = V_{SS}$	-10	_	-	
Low-level input current (5V Tolerant buffer) $V_{IL} = V_{SS}$ -10 $-$	(Normal buffer)	 u	$V_{IL} = V_{SS} (50 k\Omega \text{ pull-up})$	-200	_	-10	uА
	Low-level input current (5V Tolerant buffer)		V _{IL} = V _{SS}	-10	-	-	I
$V_{OH} = V_{DDIO}$ – – 10			V _{OH} = V _{DDIO}	-	-	10	
3-state output leakage $V_{OH} = V_{DDIO} (50 k\Omega \text{ pull-down})$ 10 – 200	3-state output leakage	OZH	$V_{OH} = V_{DDIO} (50 k\Omega \text{ pull-down})$	10	-	200	
(Normal buffer) $V_{OL} = V_{SS}$ -10	(Normal buffer)		$V_{OL} = V_{SS}$	-10	-	_	
$V_{OL} = V_{SS} (50 k\Omega \text{ pull-up})$ -20010		OZL	$V_{OL} = V_{SS} (50 k\Omega \text{ pull-up})$	-200	-	-10	
3-state output leakage $V_{OH} = V_{DDIO}$ 10	3-state output leakage		$V_{OH} = V_{DDIO}$	_	-	10	
current $V_{IH} = 5.5V$ $ -$ 10 μ A	current	^I OZH	V _{IH} = 5.5V	_	-	10	μA
(5V Tolerant buffer) I_{OZL} $V_{OL} = V_{SS}$ -10	(5V Tolerant buffer)	I _{OZL}	V _{OL} = V _{SS}	-10	-	_	

DC Characteristics (V_{DDCORE} = 1.35 to 1.65 V, V_{DDIO} = 3.0 to 3.6 V, V_{SS} = 0 V, T_j = -40 to +85°C)

1. Typical condition is V_{DDCORE} = 1.5V, V_{DDIO} = 3.3V, and T_j = 25°C on a typical process.

DC	Characteristics	(V _{DDCORE} =	1.35 to 1.65	V, V _{DDIO} =	3.0 to 3.6 V,	$V_{SS} = 0 V,$	T _j = -40 to +125°C)
----	-----------------	------------------------	--------------	------------------------	---------------	-----------------	---------------------------------

			R	ated Value	•		
Parameter	Symbol	Conditions	Min.	Typ. ^[1]	Max.	Unit	
High lovel input veltage	M	TTL input (normal)	2.0	-	V _{DDIO} + 0.3		
nigh-level linput voltage	VIH	TTL input (5V Tolerant)	2.0	-	5.5		
	V	TTL input (normal)	-0.3	-	0.8		
Low-level input voltage	VIL	TTL input (5V Tolerant)	-0.3	-	0.8		
TTL- level Schmitt	V _{t+}	TTI normal input	-	-	2.1		
Trigger input buffer	V _{t-}	TTE normal input	0.7	-	-		
$ \frac{\Delta V_{t}}{\text{high-level output voltage}} = \frac{\Delta V_{t}}{V_{OH}} \frac{V_{t+} - V_{t-}}{V_{H}} = \frac{0.25}{V_{DDIO} - 0.2} - - \\ \frac{V_{DDIO} - 0.2}{V_{DDIO} - 0.2} - - \\ \frac{V_{DDIO} - 0.2}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 100 \ \mu\text{A}}{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}} 2.35 - - \\ \frac{V_{DH} - 100 \ \mu\text{A}}{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}} 2.35 - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2} - - \\ \frac{V_{DH} - 2, -4, -6, -8, -10, -12, -14, -16, -24 \text{ mA}}{V_{DDIO} - 0.2 \text{ mA}} - - 0.2 \text{ mA} - - - $	-						
High-level output voltage		I _{OH} = -100 μA	V _{DDIO} - 0.2	_	-	V	
(Normal buffer)		I _{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA	2.35	-	-		
High-level output voltage	∣ ∨он	I _{OH} = -100 μA	V _{DDIO} - 0.2	-	-		
(5V Tolerant buffer)		I _{OH} = -2, -4, -6, -8, -10, -12, -14, -16, -24 mA	2.35	_	-		
Low-level output voltage		I _{OL} = 100 μA	_	_	0.2		
(Normal buffer)		I _{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 mA	0.45				
Low-level output voltage	۷OL	I _{OL} = 100 μA	_	_	0.2		
(5V Tolerant buffer)		I _{OL} = 2, 4, 6, 8, 10, 12, 14, 16, 24 mA	_	_	0.45		
High-level input current		V _{IH} = V _{DDIO}	_	-	50		
(Normal buffer)		$V_{IH} = V_{DDIO} (50 k\Omega \text{ pull-down})$	10	_	200		
High-level input current	ЧН	V _{IH} = V _{DDIO}	-	-	50		
(5V Tolerant buffer)	input voltage V_{IH} TTL input (normal) TTL input (5V Tolerant)input voltage V_{IL} TTL input (5V Tolerant)Schmitt but buffer voltage V_{t+} TTL normal inputSchmitt but buffer voltage V_{t+} TTL normal inputSchmitt but buffer voltage V_{t+} $TTL normal inputoutput voltageuffer)V_{V+}V_{U+} - Vt-output voltageant buffer)V_{OH}I_{OH} = -2, -4, -6, -8, -10, -12, -14output voltageuffer)V_{OH}I_{OL} = 2, 4, 6, 8, 10, 12, 14, 16,output voltageant buffer)V_{OL}I_{OL} = 100 \ \mu Ainput currentuffer)V_{OL}I_{OL} = 100 \ \mu Ainput currentant buffer)I_{IH}V_{IH} = V_{DDIO}input currentant buffer)I_{IL}V_{IL} = V_{SS}V_{IL} = V_{SS}V_{IL} = V_{SS}V_{IL} = V_{SS}tput leakageI_{OZH}V_{OH} = V_{DDIO}V_{OL} = V_{SS}V_{OL} = V_{SS}V_{OL} = V_{SS}tput leakageI_{OZH}V_{OH} = V_{DDIO}tput leakageI_{OZH}V_{OH} = V_{DDIO}tput leakageI_{OZH}V_{OH} = V_{DDIO}tput leakageI_{OZH}V_{OH} = V_{DDIO}tput leakageI_{OZH}V_{OH} = V_{SS}ant buffer)I_{OZL}V_{OL} = V_{SS}$	V _{IH} = 5.5V	_	-	50		
Low-level input current		$V_{IL} = V_{SS}$	-50	-	-		
(Normal buffer)	- 	$V_{IL} = V_{SS} (50 k\Omega \text{ pull-up})$	-200	-	-10		
Low-level input current (5V Tolerant buffer)		V _{IL} = V _{SS}	-50	-	-	μA	
		V _{OH} = V _{DDIO}	_	_	50	-	
3-state output leakage	^I OZH	$V_{OH} = V_{DDIO} (50 k\Omega \text{ pull-down})$	$V_{OH} = V_{DDIO} (50 k\Omega \text{ pull-down})$ 10 –		200		
(Normal buffer)		V _{OL} = V _{SS}	-50	_	_		
· · · · ·	OZL	$V_{OL} = V_{SS} (50 k\Omega \text{ pull-up})$	-200	_	-10		
3-state output leakage		V _{OH} = V _{DDIO}	_	_	50		
current	IOZH	V _{IH} = 5.5V	_	_	50		
TTL- level Schmitt Trigger input buffer Threshold voltageHigh-level output voltage (Normal buffer)High-level output voltage 	I _{OZL}	$V_{OL} = V_{SS}$	-50	_	-		

1. Typical condition is V_{DDCORE} = 1.5V, V_{DDIO} = 3.3V, and T_j = 25°C on a typical process.

Oki Semiconductor

8

Pa	arameter	Driving Type	Conditions ^[1] ^[2]	Rated Value [3]	Unit		
		1X		0.038			
	Inverter	2X		0.034			
		4X	F(0 - 2 + -0) mm	0.027			
		1X	- F/O = 2, L = 0 mm	0.047			
Internal gate propagation delay	2-input NAND	2X		0.038			
		4X		0.033			
		1X		0.231	115		
	Inverter	2X		0.168			
		4X	F/O = 2, L =	0.097			
		1X	standard wire length	0.280			
	2-input NAND	2X		0.155			
		4X		0.093			
Toggle frequency			F/O = 1, L = 0 mm	3530	MHz		
Input buffer propagation	TTL level normal input buffer		F/O = 2, L = standard 0.391				
delay	TTL 5V Tolerant input buffer		wire length	0.708			
nput buffer propagation		4 mA	CL = 20 pF	1.880			
	Push-pull Normal output buffer	8 mA	CL = 50 pF	2.072			
Output buffer		12mA	CL = 100 pF	2.597]		
propagation delay		4 mA	CL = 20 pF	2.193			
	5V Tolerant buffer	8 mA	CL = 50 pF	2.689	115		
		12 mA	CL = 100 pF	2.820			
	Push-pull	12 mA	CL = 100 pE	3.524 (r)			
Output buffer	Normal output buffer	12 111A	CL = 100 pr	3.526 (f)	-		
transition time ^[4]	Tri-state	12 mA	CL = 100 pE	3.571 (r)			
	5V Tolerant buffer		CL = 100 pr	3.466 (f)			

AC Characteristics ($V_{DDCORE} = 1.5V$, $V_{DDIO} = 3.3V$, $V_{SS} = 0 V$, $T_j = 25^{\circ}C$)

1. Input transition time in 1.5 V/0.1 ns (internal gate), 3.3 V/0.2 ns (input/output buffer).

2. Typical condition is V_{DDCORE} = 1.5 V, V_{DDIO} = 3.3 V, and T_{j} = 25°C for a typical process.

3. Rated value is calculated as an average of the L-H and H-L delay times of each macro type on a typical process.

4. Output rising and falling times are both specified over a 10% to 90% range.

MACRO LIBRARY

Oki Semiconductor supports a wide range of macrocells ranging from simple hard macrocells for basic boolean operations to large, user-parameterizable macrocells. The following figure illustrates the main classes of macrocells available.

Figure 4. Oki Macrocell Library

Macrocells for Driving Clock Trees

Oki offers the clock tree synthesis (CTPKS) in the Cadence Design Systems, Inc. Physically Knowledgeable Synthesis (PKS) tool. CTPKS constructs buffer trees for any number of specified clocks in a design. CTPKS builds these clock trees one by one, then explores the different tree structures. For each structure, CTPKS places new buffers or inverters and groups the clock leaf pins into clusters so that the pin and wire loads are balanced. PKS timing verification is run on the newly created clock tree, with parasitics extracted from the location of each buffer and inverter. If the performance of the clock tree is better than that of the previous one, the new tree is kept. Otherwise it is rejected.

CTPKS uses the following predefined priority of constraints when selecting the best clock tree topology:

- 1. Satisfy the maximum load and maximum transition delay constraints.
- 2. Satisfy the maximum delay constraint.
- 3. Satisfy the maximum skew constraint.
- 4. Minimize the size of the clock tree.

After finding the best topology according to the priority list above, CTPKS satisfies the minimum delay constraint by adding appropriate padding buffers.

OKI ADVANCED DESIGN CENTER CAD TOOLS

Oki's advanced design center CAD tools include support for the following:

- Floorplanning for front-end simulation and back-end layout control
- Clock tree structures improve first-time silicon success by eliminating clock skew problems
- JTAG Boundary scan support
- Power calculation which predicts circuit power under simulation conditions to accurately model package requirements

Vendor	Platform	Operating System ^[1]	Vendor Software/Revision ^[1]	Description
Cadence	Sun ^{® [2]}	Solaris 8	Ambit Buildgates NC-Verilog™ Verilog XL NC-VHDL Delay Storm Turbo Fault	Design Synthesis Design Simulation Design Simulation Design Simulation Timing Calculation Fault Grading
Synopsys	Sun ^{® [2]}	Solaris 8	Design Compiler Ultra + Tetramax/ATPG Primetime DFT Compiler/Test Compiler RTL Analyzer BSD Complier VCS	Design synthesis Test Synthesis Static Timing Analysis (STA) Test synthesis HDL Source Code Identification JTAG Insertion Design Simulation
Model Technology Inc. (MTI)	Sun ^{® [2]} NT	Solaris 8 WinNT4.0	MTI-VHDL MTI-Verilog	VHDL Simulation Verilog Simulation
Xemplar	Sun ^{® [2]} NT	Solaris 8 WinNT4.0	Leonardo Spectrum	Design Synthesis
Oki	Sun ^{® [2]}	Solaris 8	Floorplanner Hier Floorplanner	Design Floorplanning Design Floorplanning
Verplex	Sun ^{® [2]}	Solaris 8	Conformal LEC	Formal Verification

1. Contact Oki Application Engineering for current software versions.

2. Sun or Sun-compatible.

DESIGN PROCESS

The following figure illustrates the overall IC design process, also indicating the three main interface points between external design houses and Oki ASIC Application Engineering.

[3] Oki's Test Pattern Language (TPL)

[4] Alternate Customer-Oki design interfaces available in addition to standard level 2

[5] Requires Synopsys timing script for Oki timing driven layout

Figure 5. Oki's Design Process

Automatic Test Pattern Generation

Oki's 0.15µm ASIC technologies support ATPG using full scan-path design techniques, including the following:

- High fault coverage
- Uses Synopsys DFT Compiler and Tetramax
- Automatically inserts scan structures
- Connects scan chains
- Traces and reports scan chains
- Checks for rule violations
- Generates complete fault reports
- Allows multiple scan chains
- Supports test point insertion and vector compaction

ATPG methodology is described in detail in Oki's Scan Path Application Note.

Figure 6. Full Scan Path Configuration

Floorplanning Design Flow

Oki offers the floorplanning tool (OKI FP) for high-density ASIC design. The three main purposes for Oki's floorplanning tool is to:

- Ensure conformance of critical circuit performance specifications
- Shorten overall design TAT
- Hierarchical Layout

In a traditional design approach with synthesis tools there is no physical cluster information provided in the synthesis tool, and so it is difficult to synthesize logic using predicted interconnection delay due to wire length. Synthesis tools may therefore create an over-optimized or under-optimized result.

Floorplanning allows designers to estimate and control parasitic capacitance in a circuit by participating in the physical design process. Designers can partition their ASIC circuit in the most efficient hierarchical manner, and/or specify the exact placement of critical timing paths to guarantee high-speed performance.

Floorplanning also allows the reduction of layout iterations, minimizing a design's overall TAT. As parasitic capacitance dominates a circuit's timing in sub-micron technologies, an accurate capacitance estimation is crucial for accurate pre-layout timing simulation. Quite often, designers have to iterate the circuit layout because unexpected post-layout capacitance causes unacceptable circuit performance.

14 Oki Semiconductor

More information on OKI's floorplanning capabilities is available in Oki's Application Note, Using Oki's Floorplanner: Standalone Operation and Links to Synopsys.

Figure 7. Design Flow

IEEE JTAG Boundary Scan Support

Boundary scan offers efficient board-level and chip-level testing capabilities. Benefits resulting from incorporating boundary-scan logic into a design include:

- Improved chip-level and board-level testing and failure diagnostic capabilities
- Support for testing of components with limited probe access
- Easy-to-maintain testability and system self-test capability with on-board software
- Capability to fully isolate and test components on the scan path
- Built-in test logic that can be activated and monitored
- An optional Boundary Scan Identification (ID) Register

Oki's boundary scan methodology meets the JTAG Boundary Scan standard, IEEE 1149.1-1990. Oki supports boundary scan on Customer Structured Array (CSA) ASIC technologies. Either the customer or Oki can perform boundary-scan insertion. More information is available in Oki's *JTAG Boundary Scan Application Note*. (Contact the Oki Application Engineering Department for interface options.)

PACKAGE OPTIONS

		TQFP				LQFP			QFP						
Product Name	I/O Pads ^[1]	44	64	80	100	128	144	176	208	44	64	80	100	208	240
MG7xKB02	68	#													
MG7xKB04	108	#			•						•	#			
MG7xKB06	148	•		•	•	•					•	#	#		
MG7xKB08	188	•	•	•	•	•				#	•	#	#		
MG7xKB10	228	•	•	•	•	•	•	•	•	#	•	#		•	
MG7xKB12	268	•	•	•	•	•	•	•	•	#	•	#	#	•	
MG7xKB14	308		•	•	•	•	•	•	•	#	•	#	#	•	
MG7xKB16	348		#	•	•		•	•	•		•	#	#	•	
MG7xKB18	388			•	•		•	•	•		•	#	#	•	#
MG7xKB20	428			•	•		•	•	•		•	#	#	•	•
MG7xKB22	468			•	•		•	•	•		•	#	#	•	
MG7xKB24	508				•		•	•	•		•	#	#	•	
MG7xKB26	548				•		•	•	•		•		#	•	•
MG7xKB28	588						•	•	•					•	•
MG7xKB30	628						•	•	•					•	
MG7xKB32	668						•	•	•					•	#
MG7xKB34	708						•	•	•						•
MG7xKB36	748						•	•	•						
MG7xKB38	788								•						
MG7xKB40	828								•						
MG7xKB42	868								•						
Body Size (mm)		10 x 10	10 x 10	12 x 12	14 x 14	14 x 14	20 x 20	24 x 24	28 x 28	9 x 10	14 x 14	14 x 20	14 x 20	28 x 28	32 x 32
Lead Pitch (mm)		0.80	0.50	0.50	0.50	0.40	0.50	0.50	0.50	0.80	0.80	0.80	0.65	0.50	0.50

TQFP, LQFP, and QFP Package Menu

1. I/O Pads can be used for input, output, bi-directional, power, or ground.

 \bullet = Available

= Planning

TFLGA, LFBGA, and PBGA Package Menu

			TFLGA		LFBGA				PBGA				
Product Name	I/O Pads ^[1]	48	56	84	48	84	144	224	256	352	420	676	896
MG7xKB02	68	•		•	•	•							
MG7xKB04	108	•		•	•	•							
MG7xKB06	148	•		•	•	•							
MG7xKB08	188	•		•	•	•							
MG7xKB10	228		#	•	•	•							
MG7xKB12	268		#	•		•	•						
MG7xKB14	308			•		•	•		•				
MG7xKB16	348						•	•	•	•			
MG7xKB18	388						•	•	•	•	•		
MG7xKB20	428						•	•	•	•	•		
MG7xKB22	468						•	#	•	•	•		
MG7xKB24	508							•	•	•	•		
MG7xKB26	548								•	•	•		
MG7xKB28	588								•	•	•	#	
MG7xKB30	628								•	•	•	#	
MG7xKB32	668								•	•	•	#	
MG7xKB34	708									•	•		
MG7xKB36	748									•			
MG7xKB38	788									•			#
MG7xKB40	828									•			#
MG7xKB42	868									•			#
Body Size (mm)		7x7	8x8	9x9	7x7	9x9	11x11	15x15	27x27	35x35	35x35	27x27	31x31
Ball Pitch (mm)		0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.27	1.27	1.27	1.00	1.00
Ball Count		48	56	84	48	84	144	224	256	352	420	676	896
Signal I/O ^[2]		48	56	84	48	84	144	224	231	304	352	540	700
Power Balls		0	0	0	0	0	0	0	12	16	32	48	68
GND Balls		0	0	0	0	0	0	0	13	32	36	88	128

1. I/O pads can be used for input, output, bi-directional, power, or ground.

2. Signal I/O can be used for input, output, bi-directional, power, or ground.

• = Available now

= Planning

The information contained herein can change without notice owing to product and/or technical improvements.

Please make sure before using the product that the information you are referring to is up-to-date.

The outline of action and examples of application circuits described herein have been chosen as an explanation of the standard action and performance of the product. When you actually plan to use the product, please ensure that the outside conditions are reflected in the actual circuit and assembly designs.

Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters outside the specified maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.

When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges, including but not limited to operating voltage, power dissipation, and operating temperature.

The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g.,office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property or death or injury to humans. Such applications include, but are not limited to: traffic control, automotive, safety, aerospace, nuclear power control, and medical, including life support and maintenance.

Certain parts in this document may need governmental approval before they can be exported to certain countries. The purchaser assumes the responsibility of determining the legality of export of these parts and will take appropriate and necessary steps, at their own expense, for export to another country.

Copyright 2003 Oki Semiconductor

Oki Semiconductor reserves the right to make changes in specifications at anytime and without notice. This information furnished by Oki Semiconductor in this publication is believed to be accurate and reliable. However, no responsibility is assumed by Oki Semiconductor for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Oki.

Oki Semiconductor

Silicon Solutions

Northwest Area

785 N. Mary Avenue Sunnyvale, CA 94085 Tel: 408/720-8940 Fax:408/720-8965

Northeast Area

Shattuck Office Center 138 River Road Andover, MA 01810 Tel: 978/688-8687 Fax:978/688-8896

Southwest Area

1902 Wright Place, Suite 200 Carlsbad, CA 92008 Tel: 760/918-5830 760/918-5832 Fax:760/918-5505

> Oki Web Site: http://www.okisemi.com/us

Oki Stock No: 320284-001

Oki Semiconductor

Corporate Headquarters

785 N. Mary Avenue Sunnyvale, CA 94085-2909 Tel: 408/720-1900 Fax:408/720-1918