

March 2000 Advance Information

1.0 Features

- Dual phase-locked loop (PLL) device with three output clock frequencies
- 3.3V supply voltage
- Small circuit board footprint (8-pin 0.150" SOIC)
- Custom frequency selections available contact your local AMI Sales Representative for more information

Figure 1: Pin Configuration

2.0 Description

The FS6284 is a monolithic CMOS clock generator IC designed to minimize cost and component count in digital video/audio systems.

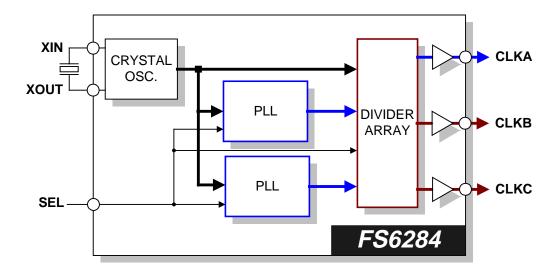

All frequencies are ratiometrically derived from the crystal oscillator frequency. The locking of all the output frequencies together can eliminate unpredictable artifacts in video systems and reduce electromagnetic interference (EMI) due to frequency harmonic stacking.

Table 1: Crystal / Output Frequencies

DEVICE	SEL	f _{XIN} (MHz)	CLKA (MHz)	CLKB (MHz)	CLKC (MHz)
FS6284-01	0	14.31818	14.31818 (f _{XIN})	48.000 (f _{XIN} * 352 / 105)	81.000 (f _{XIN} * 198 / 35)
	1	14.31010			70.000 (f _{XIN} * 44 / 9)

NOTE: Contact AMI for custom PLL frequencies

Figure 2: Block Diagram

This document contains information on a preproduction product. Specifications and information herein are subject to change without notice.

FS6284

Dual PLL Clock Generator IC

Advance Information March 2000

Table 2: Pin Descriptions

Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; $DI^U = Input$ with Internal Pull-Up; $DI_D = Input$ with Internal Pull-Down; DIO = Digital Input; DIO = Digi

PIN	TYPE	NAME	DESCRIPTION	
1	DI ^U	SEL	Select Input (see Table 1)	
2	Al	XIN	Crystal Oscillator Drive / External Reference Input	
3	AO	XOUT	Crystal Oscillator Feedback	
4	Р	VDD	Power (+3.3 volts)	
5	DO	CLKC	Clock Output C	
6	Р	VSS	Ground	
7	DO	CLKB	Clock Output B	
8	DO	CLKA	Clock Output A	

3.0 Electrical Specifications

Table 3: Absolute Maximum Ratings

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only, and functional operation of the device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect device performance, functionality, and reliability.

PARAMETER	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage (V _{SS} = ground)	V_{DD}	V _{SS} -0.5	7	V
Input Voltage, dc	Vi	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	V _{SS} -0.5	V _{DD} +0.5	V
Input Clamp Current, dc (V _I < 0 or V _I > V _{DD})	I _{IK}	-50	50	mA
Output Clamp Current, dc (V _I < 0 or V _I > V _{DD})	I _{ok}	-50	50	mA
Storage Temperature Range (non-condensing)	Ts	-65	150	°C
Ambient Temperature Range, Under Bias	T _A	-55	125	°C
Junction Temperature	T _J		125	°C
Lead Temperature (soldering, 10s)			260	°C
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)			2	kV

CAUTION: ELECTROSTATIC SENSITIVE DEVICE

Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a high-energy electrostatic discharge.

Table 4: Operating Conditions

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Supply Voltage	V_{DD}	3.3V ± 10%	3.0	3.3	3.6	V
Ambient Operating Temperature Range	T _A		0		70	°C

March 2000 Advance Information

4.0 Package Information

Table 5: 8-pin SOIC (0.150") Package Dimensions

	DIMENSIONS					
	INC	HES	MILLIM	MILLIMETERS		
	MIN. MAX.		MIN.	MAX.		
Α	0.061	0.068	1.55	1.73		
A1	0.004	0.0098	0.102	0.249		
A2	0.055	0.061	1.40	1.55		
В	0.013	0.019	0.33	0.49		
С	0.0075	0.0098	0.191	0.249		
D	0.189	0.196	4.80	4.98		
Е	0.150	0.157	3.81	3.99		
е	0.050	0.050 BSC		BSC		
Н	0.230	0.244	5.84	6.20		
h	0.010	0.016	0.25	0.41		
L	0.016	0.035	0.41	0.89		
Θ	0°	8°	0°	8°		

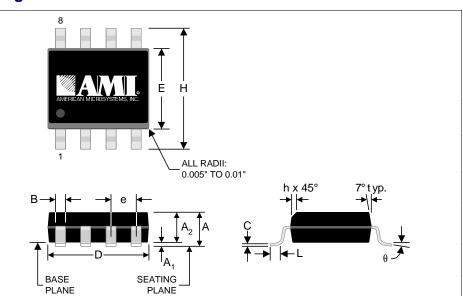


Table 6: 8-pin SOIC (0.150") Package Characteristics

PARAMETER	SYMBOL CONDITIONS/DESCRIPTION		TYP.	UNITS	
Thermal Impedance, Junction to Free-Air 8-pin 0.150" SOIC	Θ_{JA}	Air flow = 0 m/s	110	°C/W	
Lead Inductance, Self		Corner lead	2.0	nH	
Lead inductance, Sen	L ₁₁	Center lead	1.6		
Lead Inductance, Mutual	L ₁₂	Any lead to any adjacent lead	0.4	nΗ	
Lead Capacitance, Bulk	C ₁₁	Any lead to V _{SS}	0.27	pF	

FS6284

Dual PLL Clock Generator IC

Advance Information March 2000

5.0 Ordering Information

ORDERING CODE	DEVICE NUMBER	PACKAGE TYPE	OPERATING TEMPERATURE RANGE	SHIPPING CONFIGURATION	
11640-xxx	FS6284-01	8-pin (0.150") SOIC (Small Outline Package)	0°C to 70°C (Commercial)	Tape and Reel	
11640-xxx	FS6284-01	8-pin (0.150") SOIC (Small Outline Package)	0°C to 70°C (Commercial)	Tubes	

Copyright © 2000 American Microsystems, Inc.

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications.

American Microsystems, Inc., 2300 Buckskin Rd., Pocatello, ID 83201, (208) 233-4690, FAX (208) 234-6796, WWW Address: http://www.amis.com E-mail: tgp@amis.com

