VBUS053BZ-HNH

USB-OTG BUS-Port ESD-Protection for V_{B} ($=12 \mathrm{~V}$

Features

- Ultra compact LLP1713-9M package
- Low package height < 0.6 mm
- 3-line USB ESD- protection with max. working range $=5.5 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{BUS}}$ - protection with 12 V working range
- Low leakage current
- Low load capacitance $C_{D}=0.7 \mathrm{pF}$
- ESD-protection to IEC 61000-4-2

RoHS complant GREEN $(5-2008)^{\star *}$
 $\pm 12 \mathrm{kV}$ contact discharge $\pm 15 \mathrm{kV}$ air discharge

- Surge current acc. IEC 6100-4-5 $I_{P P}>3$ A
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Marking (example only)

20719

Dot = Pin 1 marking
$\mathrm{Y}=$ Type code (see table below)
XX = Date code

Ordering Information

Device name	Ordering code	Taped units per reel $(8 \mathrm{~mm}$ tape on 7 " reel $)$	Minimum order quantity
VBUS053BZ-HNH	VBUS053BZ-HNH-G-08	3000	15000

Package Data

Device name	Package name	Marking code	Weight	Molding compound flammability rating	Moisture sensitivity level	Soldering conditions
VBUS053BZ-HNH	LLP1713-9M	K	3.7 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	$260^{\circ} \mathrm{C} / 10 \mathrm{~s}$ at terminals

Absolute Maximum Ratings

Parameter	Test conditions	Symbol	Value	Unit
Data line D+, D-, ID: Pin 1, 2 and 3 to ground (pin 9)				
Peak pulse current	Acc. IEC 61000-4-5; $\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s} /$ single shot	IPPM	3	A
Peak pulse power	Acc. IEC 61000-4-5; $\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s} /$ single shot	$\mathrm{P}_{\text {PP }}$	36	W
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	$\mathrm{V}_{\text {ESD }}$	± 12	kV
	Air discharge acc. IEC 61000-4-2; 10 pulses	$\mathrm{V}_{\text {ESD }}$	± 15	kV
$\mathrm{V}_{\text {Bus }}$: Pin 4 to ground (pin 9)				
Peak pulse current	Acc. IEC 61000-4-5; $\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s} /$ single shot	$\mathrm{I}_{\text {PPM }}$	8	A
Peak pulse power	Acc. IEC 61000-4-5; $\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s} /$ single shot	$\mathrm{P}_{\text {PP }}$	240	W
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	$V_{\text {ESD }}$	± 30	kV
	Air discharge acc. IEC 61000-4-2; 10 pulses	$V_{\text {ESD }}$	± 30	kV
Operating temperature	Junction temperature	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

** Please see document "Vishay Material Category Policy" www.vishay.com/doc?99902

Vishay Semiconductors

Electrical Characteristics

Ratings at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, ambient temperature unless otherwise specified
VBUS053BZ-HNH
All inputs (pin 1, 2, and 3) to ground (pin 9)

Parameter	Test conditions/remarks	Symbol	Min.	Typ.	Max.	Unit
Protection paths	Number of line which can be protected	N lines			3	lines
Reverse working voltage	at $\mathrm{I}_{\mathrm{R}}=0.1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {RWM }}$	5.5			V
Reverse current	at $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RWM}}=3.3 \mathrm{~V} ; \mathrm{T}=65^{\circ} \mathrm{C}$	I_{R}			0.085	$\mu \mathrm{A}$
	at $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RWM}}=5.5 \mathrm{~V}$	I_{R}			1	$\mu \mathrm{A}$
Forward voltage	at $\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	V_{F}	0.7		1.2	V
Reverse breakdown voltage	at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$V_{B R}$	6.5		10	V
Reverse clamping voltage	at $\mathrm{I}_{\mathrm{PP}}=1 \mathrm{~A}$; acc. $\mathrm{IEC} 61000-4-5 ; \mathrm{T}=25^{\circ} \mathrm{C}$	V_{C}		10	12	V
	at $\mathrm{I}_{\mathrm{PP}}=3 \mathrm{~A}$; acc. $\mathrm{IEC} 61000-4-5 ; \mathrm{T}=25^{\circ} \mathrm{C}$	V_{C}		15	18	V
Forward clamping voltage	at $\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}$; acc. IEC 61000-4-5	V_{F}		3.4	4.1	V
Line capacitance	Test pin at $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$; any other I/O pin at $\mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{D}		0.7	1	pF
Line symmetry	Difference of the line capacitance	dC_{D}			0.1	pF
Line to line capacitance	Among pins 1, 2 and 3 at $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {DD }}$		0.35	0.5	pF

$\mathrm{V}_{\text {BUS }}$ (pin 4) to ground (pin 9)

Parameter	Test conditions/remarks	Symbol	Min.	Typ.	Max.	Unit
Protection paths	Number of line which can be protected	N lines			1	line
Reverse working voltage	at $\mathrm{I}_{\mathrm{R}}=100 \mathrm{nA}$	$\mathrm{V}_{\mathrm{RWM}}$	12			V
Reverse current	at $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RWM}}=12 \mathrm{~V}$	I_{R}			100	nA
Forward voltage	at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	0.6	0.75	0.9	V
Reverse breakdown voltage	at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{BR}}$	15		18	V
Reverse clamping voltage	at $\mathrm{I}_{\mathrm{PP}}=1 \mathrm{~A}$; acc. IEC $61000-4-5 ; \mathrm{T}=25^{\circ} \mathrm{C}$	V_{C}		17.5	20	V
	at $\mathrm{I}_{\mathrm{PP}}=8 \mathrm{~A} ;$ acc. IEC $61000-4-5 ; \mathrm{T}=25^{\circ} \mathrm{C}$	V_{C}		25	30	V
Forward clamping voltage	at $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A} ;$ acc. $\mathrm{IEC} 61000-4-5$	$\mathrm{~V}_{\mathrm{F}}$			2.2	V
Line capacitance	at $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	C_{D}		70	85	pF

Application Note

The VBUSO53BZ-HNH is intended as an ESD-protection and transient voltage suppressor for one USB-OTG port.
The LLP1713-9M package contains two separate dies which are mounted on a common ground plane (pin 9). The high-speed data lines D+, D- and ID, are connected to pins 1,2 , and 3 . As long as the signal voltage on the data lines is between the ground- and the 5 V working range, the low capacitance PN-diodes offer a very high isolation to ground and to the other data lines. But as soon as any transient signal like an ESD-signal, exceeds this working range of 5 V in either the positive or negative direction, one of the PN -diodes gets into the forward mode and clamps the transient either to ground or to the avalanche break through level.
An extra avalanche diode (separate die) clamps the supply line voltage ($\mathrm{V}_{\text {Bus }}$ at pin 4) above the 12 V working range to ground (pin 9).
Due to the "two die construction" the $\mathrm{V}_{\mathrm{BUS}}$ line has a very high isolation to the data lines. In case of a destructive transient signal, i.e. coming from a charger, the data lines will not be influenced.
N.C. N.C. N.C. N.C.

Typical Characteristics

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Figure 1. ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330 $\Omega / 150 \mathrm{pF})$

Figure 2. $8 / 20 \mu \mathrm{~s}$ Peak Pulse Current Wave Form acc. IEC 61000-4-5

Figure 3. Typical Capacitance C_{D} vs. Reverse Voltage V_{R}

Figure 4. Typical Capacitance C_{D} vs. Reverse Voltage V_{R}

Figure 5. Typical Forward Current I_{F} vs.
Forward Voltage V_{F}

Figure 6. Typical Reverse Voltage V_{R} vs. Reverse Current I_{R}

Figure 7. Typical Peak Clamping Voltage V_{C} vs. Peak Pulse Current IPp

Figure 8. Typical Peak Clamping Voltage V_{C} vs. Peak Pulse Current IPP

Package Dimensions in millimeters (inches): LLP1713-9M

Document no.: S8-V-3906.04-018 (4) Created - Date: 26. May 2009

21784
foot print recommentation:

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

