Not Recommended for New Designs

This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users.

A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance.

For further information, contact Maxim's Applications Tech Support.

General Description

The MX580 is a high-performance, three-terminal voltage reference which provides a stable +2.5V source for 8-, 10-, and 12-bit data converters and analog functions. A temperature-compensated internal bandgap operates from 4.5V to 30V and consumes only 1.5mA.

The reference can be connected directly to a number of CMOS analog-to-digital and digital-to-analog converters and is especially convenient in +5V powered systems. An initial untrimmed accuracy of 0.4% and temperature stability of 10ppm/°C allow adjustment-free designs in many precision applications.

Available packages include TO-52 metal cans for commercial and military temperature grades, as well as 8-pin SO packages for commercial grade devices.

Applications

CMOS Data Conversion

Digital Panel Meters

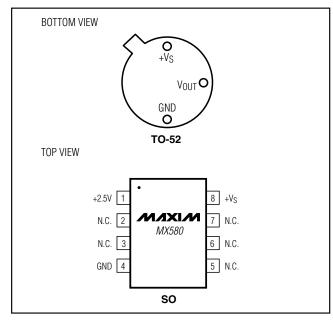
Portable Instrumentation

Remote Measurement Systems

Logic-Powered Analog Systems

Features

- **♦** 2.500V ±0.4% Accuracy (MX580L/M)
- ◆ 10ppm/°C Temperature Stability (MX580M)
- ♦ No Adjustments
- ♦ 250µV Long-Term Stability
- ♦ 1.5mA Quiescent Current
- ♦ 4.5V to 30V Operation


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOLERANCE
MX580JH	0°C to +70°C	TO-52 Can	±75mV
MX580KH	0°C to +70°C	TO-52 Can	±25mV
MX580LH	0°C to +70°C	TO-52 Can	±10mV
MX580MH	0°C to +70°C	TO-52 Can	±10mV
MX580JCSA	0°C to +70°C	8 SO	±75mV
MX580KCSA	0°C to +70°C	8 SO	±25mV
MX580LCSA	0°C to +70°C	8 SO	±10mV
MX580JESA	-40°C to +85°C	8 SO	±75mV
MX580KESA	-40°C to +85°C	8 SO	±25mV
MX580SH	-55°C to +125°C	TO-52 Can	±25mV

Typical Application Circuit

+5V MAX580 2.5V REF IN+ B0-B12 REF IN-NIXINI ICL7109 CONTROL ANALOG INIO -5V REFERENCE FOR 12-BIT ADC

Pin Configurations

NIXIN

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Input Voltage (VIN to GND)	0.3V, +40V	Storage Temperature Ra
Continuous Power Dissipation		Lead Temperature (solde
TO-52 Metal Can (derate 2.8m	nW/°C above +25°C)350mW	Thermal Resistance, Jun
	-75°C)400mW	TO-52 Metal Can
Output Short-Circuit Duration (No	ote 1)Indefinite	SO
Operating Temperature Range		Junction to Case
Commercial (J, K, L, M)	0°C to +70°C	TO-52 Metal Can
Military (S)	55°C to +125°C	SO

Storage Temperature Range	65°C to +175°C
Lead Temperature (soldering, 10s)	+300°C
Thermal Resistance, Junction to Ambient	
TO-52 Metal Can	+360°C/W
SO	+170°C/W
Junction to Case	
TO-52 Metal Can	+100°C/W
SO	+55°C/W

Note 1: Absolute maximum power dissipation must not be exceeded.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = +15V. T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage Tolerance		I _L = 0mA	MX580J/S			±75	mV
			MX580K			±25	
			MX580L/M			±10	
Output Voltage Change with		$T_A = 0^{\circ}C \text{ to } +75^{\circ}C$	MX580J			15 (85)	mV - (ppm/°C)
			MX580K			7 (40)	
			MX580L			4.3 (25)	
Temperature			MX580M			1.75 (10)	
(Temperature Coefficient)		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MX580J			20 (64)	
			MX580K			12 (38)	
		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	MX580S			25 (55)	
		I _L = 0mA, 4.5V < V _{IN} < 7V	MX580J/S		0.3	3	- mV
			MX580K		0.3	2	
Line Regulation			MX580L/M			1	
Line Regulation		I _L = 0mA, 7V < V _{IN} < 30V	MX580J/S		1.5	6	
			MX580K		1.5	4	
			MX580L/M			2	
Load Regulation		I _L = 0mA to 10mA				10	mV
Quiescent Supply Current	IQ	I _L = 0mA			1.0	1.5	mA
Noise	en(P-P)	0.1Hz to 10Hz			60	-	μV _{P-P}
Stability				250		/	
					25	<u></u>	μV

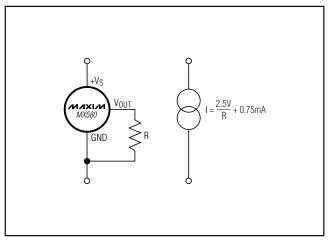
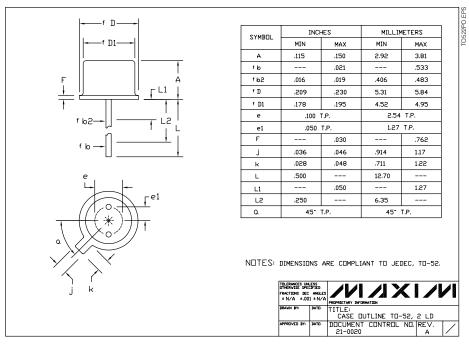



Figure 1. Two-Component Precision Current Limiter

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

4 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.