NL7SZ97

Configurable Multifunction Gate

The NL7SZ97 is an advanced high-speed CMOS multifunction gate. The device allows the user to choose logic functions MUX, AND, OR, NAND, NOR, INVERT and BUFFER. The device has Schmitt-trigger inputs, thereby enhancing noise immunity.

The NL7SZ97 input and output structures provide protection when voltages up to 7.0 V are applied, irregardless of the supply voltage.

Features

- High Speed: $t_{\text {PD }}=3.3 \mathrm{~ns}$ (Typ) @ $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (Maximum) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Package
- This is a Pb-Free Device

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SC-88 (SOT-363)
CASE 419B
MARKING DIAGRAM

MF = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)

PIN ASSIGNMENTS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 1. Function Diagram
PIN ASSIGNMENT

1	IN B
2	GND
3	IN A
4	OUT Y
5	$\mathrm{~V}_{\mathrm{CC}}$
6	IN C

FUNCTION TABLE*

Input			Output
A	B	C	Y
L	L	L	L
L	L	H	L
L	H	L	H
L	H	H	L
H	L	L	L
H	L	H	H
H	H	L	H
H	H	H	H

*To select a logic function, please refer to "Logic Configurations section".

LOGIC CONFIGURATIONS

Figure 2. 2-Input MUX
Figure 3. 2-Input AND (When B = "L")

$A-T$
$C \rightarrow I$
C

Figure 4. 2-Input OR with Input C Inverted (When B = "H")

Figure 6. 2-Input OR (When A ="H")

Figure 5. 2-Input AND with Input C Inverted (When A = "L")

Figure 7. Inverter (When A = "L" and B = "H")

B

Figure 8. Buffer (When A = C = "L")

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to +7.0	V
IIK^{\prime}	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<$ GND	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<$ GND	-50	mA
Io	DC Output Source/Sink Current	± 50	mA
ICC	DC Supply Current Per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1) SC-88	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C} \quad$ SC-88	200	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Mode (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \mathrm{~N} / \mathrm{A} \end{gathered}$	V
l LATCHUP	Latchup Performance Above $\mathrm{V}_{\text {CC }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mmeby己1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fail Rate		0	20
		$\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	nS / V	
	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	v_{cc}(V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{V}_{\text {T+ }}$	Positive Threshold Voltage		1.65	0.79		1.16		1.16		1.16	V
			2.3	1.11		1.56		1.56		1.56	
			3.0	1.5		1.87		1.87		1.87	
			4.5	2.16		2.74		2.74		2.74	
			5.5	2.61		3.33		3.33		3.33	
$\mathrm{V}_{\mathrm{T} \text { - }}$	Negative Threshold Voltage		1.65	0.35		0.62	0.35		0.35		V
			2.3	0.58		0.87	0.58		0.58		
			3.0	0.84		1.19	0.84		0.84		
			4.5	1.41		1.9	1.41		1.41		
			5.5	1.78		2.29	1.78		1.78		
V_{H}	Hysteresis Voltage		1.65	0.30		0.62	0.30	0.62	0.30	0.62	V
			2.3	0.40		0.8	0.40	0.8	0.40	0.8	
			3.0	0.53		0.87	0.53	0.87	0.53	0.87	
			4.5	0.71		1.04	0.71	1.04	0.71	1.04	
			5.5	0.8		1.2	0.8	1.2	0.8	1.2	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{T}-\mathrm{MIN}} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 1.65- \\ 5.5 \end{array}$	$\begin{gathered} V_{\mathrm{CC}} \\ -0.1 \end{gathered}$			$\begin{aligned} & \hline V_{c c} \\ & -0.1 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -0.1 \end{aligned}$		V
		$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {T-MIN }}$									
		$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.65	1.2			1.2		1.2		
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.9			1.9		1.9		
		$\mathrm{l}_{\mathrm{OH}}=-16 \mathrm{~mA}$	3.0	2.4			2.4		2.4		
		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.3			2.3		2.3		
		$\mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}$	4.5	3.8			3.8		3.8		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & V_{\mathrm{IN}^{2}} \geq \mathrm{V}_{\mathrm{T}+\mathrm{MAX}} \\ & \mathrm{IOL}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 1.65- \\ 5.5 \end{array}$			0.1		0.1		0.1	V
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$									
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	1.65			0.45		0.45		0.45	
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	2.3			0.3		0.3		0.3	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0			0.4		0.4		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0			0.55		0.55		0.55	
		$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$	4.5			0.55		0.55		0.55	
I_{N}	Input Leakage Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IN}} \leq \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0 \text { to } \\ 5.5 \end{gathered}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	5.5			1.0		10		10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test Condition	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHHL }} \end{aligned}$	Propagation Delay, Any Input to Output Y (See Test Circuit)	1.65-1.95		3.2	8.6	14.4	3.2	14.4	3.2	14.4	ns
		2.3-2.7		2.0	5.1	8.3	2.0	8.3	2.0	8.3	
		3.0-3.6		1.5	3.9	6.3	1.5	6.3	1.5	6.3	
		4.5-5.5		1.1	3.3	5.1	1.1	5.1	1.1	5.1	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				3.5						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 6)	5.0	$\mathrm{f}=10 \mathrm{MHz}$		22						pF

6. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{C C}(O P R)=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C}$. $C_{P D}$ is used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} \bullet V_{C C}{ }^{2} \bullet f_{i n}+I_{C C} \bullet V_{C C}$.

TEST CIRCUIT AND VOLTAGE WAVEFORMS

Figure 9. Load Circuit

$\mathbf{V}_{\mathbf{C C}}$	Inputs						
	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}} / \mathbf{t}_{\mathbf{f}}$		$\mathbf{V}_{\mathrm{LOAD}}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{\Delta}}$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$		$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	500Ω	0.15 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	3 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	500Ω	0.3 V

Figure 10. Voltage Waveforms Pulse Duration

Figure 12. Voltage Waveforms Propagation Delay Times Inverting and Noninverting Outputs

Figure 11. Voltage Waveforms Setup and Hold Times

Figure 13. Voltage Waveforms Enable and Disable Times Low- and High-Level Enabling
7. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
8. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control
9. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
10. The outputs are measured one at a time, with one transition per measurement.
11. All parameters are waveforms are not applicable to all devices.

ORDERING INFORMATION

Device	Package	Shipping †
NL7SZ97DFT2G	SC-88 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NL7SZ97

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363
 CASE 419B-02
 ISSUE W

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or $800-344-3860$ Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

