NL17SZ00

Single 2-Input NAND Gate

The NL17SZ00 is a single 2-input NAND Gate in two tiny footprint packages. The device performs much as LCX multi-gate products in speed and drive.

Features

- Tiny SOT-353 and SOT-553 Packages
- $2.7 \mathrm{~ns} \mathrm{~T}_{\mathrm{PD}}$ at 5 V (typ)
- Source/Sink 24 mA at 3.0 V
- Over-Voltage Tolerant Inputs
- Pin For Pin with NC7SZ00P5X, TC7SZ00FU and TC7SZ00AFE
- Chip Complexity: FETs $=20$
- Designed for 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- $\mathrm{Pb}-$ Free Packages are Available

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol
0 N

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

PIN ASSIGNMENT

Pin	Function
1	A
2	B
3	GND
4	Y
5	$\mathrm{~V}_{\mathrm{CC}}$

FUNCTION TABLE

Input		Output $\mathbf{Y}=\mathbf{A B}$
\mathbf{A}	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIK	DC Input Diode Current	-50	mA
lok	DC Output Diode Current	-50	mA
Iout	DC Output Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+ 150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance SOT-353 (Note 1) SOT-553	$\begin{aligned} & 350 \\ & 496 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	$\begin{array}{ll}\text { Power Dissipation in Still Air at } 85^{\circ} \mathrm{C} & \text { SOT-353 } \\ & \text { SOT-553 }\end{array}$	$\begin{aligned} & \hline 186 \\ & 135 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
ESD	ESD ClassificationHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	Class Z Class A N/A	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	1.65	5.5	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {OUT }}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		0	100
		$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\mathrm{~ns} / \mathrm{V}$	

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 5.5 \end{gathered}$	$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 5.5 \end{gathered}$			$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		$\begin{aligned} & 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V
V_{OH}	High-Level Output Voltage $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~h} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.55 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{CC}} \\ 1.65 \\ 2.1 \\ 2.4 \\ 2.7 \\ 2.5 \\ 4.0 \end{array}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.55 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \end{gathered}$		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \hline \mathrm{ILL}=100 \mu \mathrm{~A} \\ & \mathrm{IOL}=3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		$\begin{aligned} & 0.08 \\ & 0.20 \\ & 0.22 \\ & 0.28 \\ & 0.38 \\ & 0.42 \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$		$\begin{gathered} \hline 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$	V
In	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1		10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay (Figure 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.65	2.0	5.4	11.4	2.0	12	ns
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.8	2.0	4.5	9.5	2.0	10.0	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	2.5 to 0.2	0.8	3.0	6.5	0.8	7.0	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	3.3 ± 0.3				0.5		
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		1.5	2.4	5.0	1.5	5.2	
		$\begin{aligned} & R_{L}=1 M \Omega, C_{L}=15 \mathrm{pF} \\ & R_{L}=500 \Omega, C_{L}=50 \mathrm{pF} \end{aligned}$	5.0 ± 0.5	$\begin{aligned} & \hline 0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.3 \end{aligned}$	0.5 0.8	$\begin{aligned} & 4.1 \\ & 4.5 \end{aligned}$	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	>4	pF
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF
	(Note 5)	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	30	

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet V_{C C} \bullet f_{i n}+l_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

Figure 3. Switching Waveform

A $1-\mathrm{MHz}$ square input wave is recommended for propagation delay tests.

Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature							Package Type	Tape and Reel Size ${ }^{\dagger}$
	Logic Circuit Indicator	No. of Gates per Package		Technology	Device Function	Package Suffix	Tape and Reel Suffix		
NL17SZ00DFT2	NL	1	7	SZ	00	DF	T2	SOT-353	$\begin{gathered} 178 \mathrm{~mm}, \\ 3000 \text { Units } \end{gathered}$
NL17SZ00DFT2G	NL	1	7	SZ	00	DF	T2	$\begin{aligned} & \text { SOT-353 } \\ & \text { (Pb-Free) } \end{aligned}$	$\begin{gathered} 178 \mathrm{~mm}, \\ 3000 \text { Units } \end{gathered}$
NL17SZ00XV5T2	NL	1	7	SZ	00	XV5	T2	SOT-553*	$\begin{gathered} 178 \mathrm{~mm} \\ 4000 \text { units } \end{gathered}$
NL17SZ00XV5T2G	NL	1	7	SZ	00	XV5	T2	SOT-553*	$\begin{gathered} 178 \mathrm{~mm} \\ 4000 \text { units } \end{gathered}$

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*All Devices in Package SOT553 are Inherently Pb-Free.

PACKAGE DIMENSIONS

SOT-353
(SC-88A, SC-70)
DF SUFFIX
CASE 419A-02
ISSUE J

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
2. 419A-01 OBSOLETE. NEW STANDARD
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.071	0.087	1.80	2.20	
B	0.045	0.053	1.15	1.35	
C	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10		
G	0.026 BSC		0.65		
BSC					
H	---	0.004	---	0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10		
N	0.008		REF	0.20	
S	0.079	0.087	2.00		

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

> SOT-553
> XV5 SUFFIX
> CASE 463B-01
> ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
c	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.063	0.067	
E	1.10	1.20	1.30	0.043	0.047	0.051	
e	0.50 BSC				0.020 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
$\mathbf{H}_{\text {E }}$	1.50	1.60	1.70	0.059	0.063	0.067	

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

