Application Notes, Revision 3.0, May 2007

DVB-T Mini Half NIM:TUA6039-2 3 Band Digital/Hybrid Tuner IC with IF AGC Amplifier Application of TUA6039-2: Specially Suitable for Digital Standard: DVB-T, DVB-C, ATSC, ISDB-T, etc

Communication Solutions

Never stop thinking

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 2007. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Overview of the DVB-T Half NIM

For Euro	Conversion Half NIM pean DVB-T application
	- -
TUA 6039-2	Single Chip Mixer-Oscillator-PLL IC
BF 5030W	Semi-biasing MOSFET
BG5120K	Semi-biasing Dual MOSFET
BB565, BB65	9C and BB 689 Varactor Diodes
BC847CW	High Gain AF Transistor
BAS70-04W	Dual Switching Diode

This mini sized single conversion Half NIM designed for DVB-T(COFDM) front-end in the frequency range from 51 to 858 MHz can be used with minimum modification for all digital broadcasting reception. The Half NIM was developed with a real 3 band tuner concept, designed without switching diodes based on the Infineon's 3 band tuner IC, **TUA6039-2** which has 3 mixers, 3 oscillators, separated SAW driver input, PLL and crystal oscillator buffer for optimum digital front-end performance. The IC is particularly suitable for COFDM applications like DVB-T and ISDB-T that require stringent close-in phase noise. The IC provides a balanced SAW filter driver output that is designed to drive a SAW filter (included in the Half NIM) directly. The DC-DC converter to generate +30VDC for tuning voltage is included in the Half NIM.

The Half NIM is optimized for IF bandwidth of 8MHz and IF center frequency = 36MHz. The frequency ranges of the Half NIM are as follows:

VHFI:	51 -	157MHz
VHF II :	164 -	442 MHz
UHF :	450 -	858 MHz

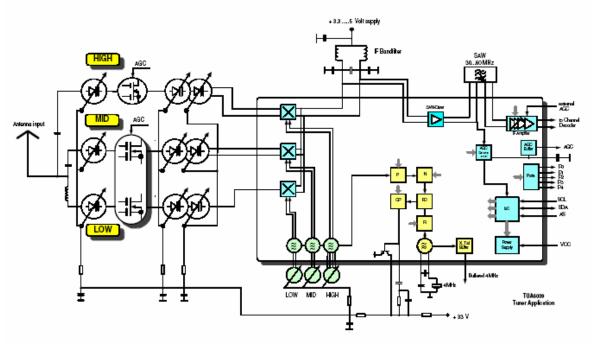
All the passive and active components except air coils, 2 choke coils are SMD components. The PCB is double-sided and the dimensions are 49.5mm x 30 mm. The thickness of the Half NIM is around 9mm.

Semiconductors:

TUA6039-2	X1
BF5030W	X1
BG5120K	X1
BB565	X7
BB659C	X4
BB689	X4
BC847CW	X1
BAS70-04W	X1

Table of Contents

1.	Half NIM Design	4
1.1.	Circuit Concept	4
1.2.	UHF RF Block	
1.3.	VHF High RF Block	
1.4.	VHF Low RF Block	5
1.5.	Oscillator Resonator, PLL Loop Filter and Phase Noise	
1.6.	IF Block	
2.	PCB	9
3.	TUA6039-2 One Chip Multimedia Tuner IC with IF Amplifier	9
3.1.	Highlights	
3.2.	Block Diagram	
4.	Alignment	
4.1.	Alignment Setup	
4.2.	Alignment Procedures	13
5.	Half NIM Electrical Characteristics	14
6.	PLL Programming	
7.	Component Lists and Ordering Information	23
8.	Circuit and Layout	30
8.1.	Circuit Diagram.	
8.2.	Layout	
8.3.	Pin Layout and Outline Dimension	
9.	Automatic Test Setup of the Team	
Appe	ndix:	
11	Schematic Diagram	
	PCB	


1. Half NIM Design

1.1. Circuit Concept

The RF input signal is split by a simple high pass filter combined with IF & CB (Citizen Band) traps. Instead of band switching with PIN diodes a very simple tri-plexer circuit is used. With a high inductive coupling the antenna impedance is transformed to the tuned input circuits. The pre-selected signal is then amplified by the high gain Semi-biased MOSFET BF5030W. One BG5120K, Dual-MOSFET can be used for both VHF bands. In the following tuned band-pass filter stage, the channel is selected and unwanted signals like adjacent channels and image frequency are rejected. Tracking traps of pre-stages and capacitive image frequency compensation of band filters reject especially image frequencies.

The conversion to IF is done in the one-chip tuner-PLL IC, TUA6039-2. TUA6039-2 is a real 3 band tuner IC which has all the active parts for the 3 mixers, 3 oscillators, an SAW driver and IF amplifier, the complete PLL functions including 4 PNP ports & 1 NPN port for the band switching, and a wideband AGC detector for internal tuner AGC. Combined with the optimized loop filter, 4 programmable charge pump currents, the balanced crystal oscillator, and the voltage controlled oscillators which have superb characteristics attributes to Infineon's Bipolar technologies, the Half NIM can achieve distinguished phase noise performance suitable for all digital applications. The balanced IF output signal of the TUA6039-2 is designed to directly drive a SAW filter in the following IF stage. The signal from the SAW is further amplified by the Gain-Controlled on-chip amplifier and its output signal can be used directly by the demodulator IC in the following stage.

The Half NIM consumes less than 130mA current or 0.65 Watt power with +5V supply voltage (or 130mA current or 430mW with +3.3V). This can be a big advantage for portable or handheld appliances.

For the detailed circuit description please refer to Section 8.

Application Notes Revision 3.0

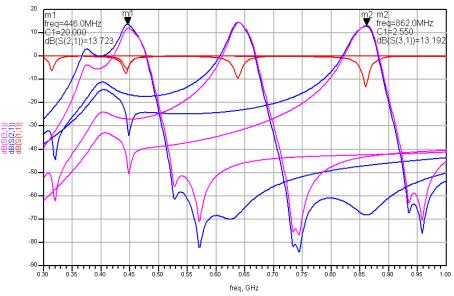
1.2. UHF RF Block

With the wide range ultra linear varactor diode BB565 it has become possible to design an UHF band without coupling diodes and without compensating coils for extending the frequency ratio in the tuned filters. To get a good tracking without a coupling diode between the input filter and the MOSFET the point of coupling is set between the tuning diode and the series capacitor, and not at the high end of the resonant circuit.

The band-pass stage is an inductive low end coupling filter, which concurrently provides the transformation from unbalance to balance. Also due to the matched image filters on both pre-stage and band-pass filter stage, better than 50dB image rejection can be achieved over the whole UHF band. By means of simple gate-1 switching through PNP ports, pre-amplifiers are selected.

1.3. VHF High RF Block

For VHF High band, high quality ratio-extended varactor diode, BB659C is used. To compensate gain, one additional coupling diode, BB565 is placed on the pre-stage of VHF High.


The RF band-pass filter is unbalanced on the primary side, and balanced on the secondary side just like UHF band pass filter. The coupling between filters is realized via a printed inductor. The mixer input circuit is optimized to protect the mixer from overloading. Image rejection filters work as those of UHF block.

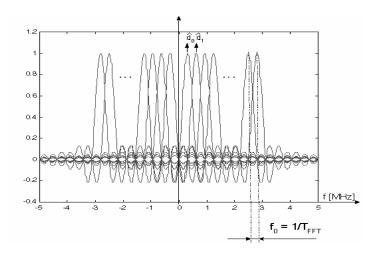
1.4. VHF Low RF Block

For the wide VHF Low frequency range a tuning diode with an extended capacitance ratio is required. BB689 is a tuning diode, which was developed to cover the wide frequency range of Hyperband tuner and at the same time shows a low series resistance. 2 X BB565 are used for coupling to achieve improved RF characteristics.

The RF band pass filter is unbalanced, and is also coupled asymmetrically to the high impedance VHF Low mixer, which has no negative effects due to the relatively low frequencies involved.

After the RF Block circuit design it is preferable to do block simulations to confirm its frequency dependent characteristics. Fig.2 is one of such simulation results.

UHF RF Block of 3Band Tuner


Fig. 2 One of the Simulation Results of DVB-T Half NIM RF Blocks

1.5. Oscillator Resonator, PLL Loop Filter and Phase Noise

The Oscillator tank circuits were carefully optimized for oscillator range, stability and phase noise. The layout is also optimized to prevent any kind of unwanted parasitic oscillation. Capacitors of the resonators could be temperature-compensated if necessary. N750 type is recommended for this purpose.

One of the most important considerations to design a good DVB-T tuner is how to down-convert input RF signals to IF frequency with minimum phase noise. The DVB-T standards provides for two modes of operation, a 2K mode with 1705 sub-carriers, and an 8K mode with 6817 sub-carriers for OFDM(Orthogonal Frequency Division Multiplexing) transmission¹. An OFDM signal as in Fig.3 contains multiple sub-carriers, each of which is a smaller percentage of the total frequency bandwidth than in a single carrier system. As a result, phase noise is a smaller percentage of the bandwidth in a single-carrier system. For this reason, phase noise degrades the performance of an OFDM system more than in a single carrier system.

Phase noise influences two important system performances: One is receiver selectivity by reciprocal mixing in Fig.4, and the other is receiver sensitivity or SNR², which decides BER (Bit-Error-Rate) of the digital system combined with other noise sources like pre-stage noise figures, image noise, etc.

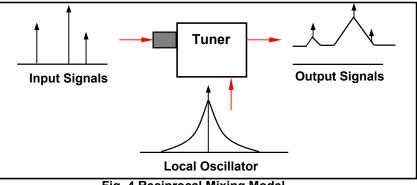


Fig. 4 Reciprocal Mixing Model

To design optimum resonators for the IC, the well-known Leeson's equation³ should always be considered. Even though there is an improved phase noise model⁴ for better phase noise analysis and prediction, Leeson's equation is still a basis of all those new approaches.

¹. ETSI EN 300 744 V1.2.1

². Muschallik, C., Influence of RF oscillators on an OFDM signal, IEEE Transactions on Consumer Electronics, vol.41,No.3, pp.602-603

$$L(fm) = 10 \log \left[\frac{1}{2} \left[\left(\frac{fo}{2QLfm} \right)^2 + 1 \right] \left(\frac{fc}{fm} + 1 \right) \left(\frac{FkT}{Ps} \right) \right]$$

(1)

L(*fm*) is ratio of noise power in a 1-Hz bandwidth in units of dBc/Hz. fo is the frequency of oscillation. fc is the flicker noise corner. F is the noise figure of oscillator. Ps is the carrier power. K is Boltzmann's constant, 1.38×10^{-23} J/K. T is Kelvin temperature. Q_L is loaded Q factor.

Infineon Technologies' bipolar process with a transit frequency (f_T) of 25 GHz to produce TUA6039-2 can satisfy a low intrinsic F requirement of oscillator. The external applications of the oscillator should be carefully designed not to degrade Q with regard to stable oscillation.

The critical role of loop filter is to remove the reference spurs produced by the phase detection process, which is fundamentally a sampled system in digital implementations. Since the control voltage directly modulates the frequency of the VCO, any AC components of tuning voltage results in a frequency modulation of the oscillator. If these components are periodic, they produce fixed side-bands like reference spurs. Because of the wide tuning range of the Half NIM, the tuning sensitivity can go up to 35MHz/V, so even a few milli-volts of noise on the tuning lines might generate noticeable spectral interference.

The oscillator's output now has the benefits of phase locking such as improved stability and phase noise and this is another crucial function of PLL. By determining a proper loop bandwidth, optimum phase noise characteristics of the reference oscillator and the local oscillator can be utilized. For a given loop bandwidth, a higher order filter provides more attenuation of out-of-band spectral components. However, the higher the order, the more poles there are, making it more difficult to maintain the stability of the loop. The loop bandwidth and loop filter components should be carefully selected to achieve optimal phase noise and to reject reference spurs. Four extended modes of charge pump currents also must be appropriately chosen and used for best phase noise performance of different frequency ranges. For this tuner design DVB-T recommended Fref=166.667kHz is used for all loop filter calculations and measurements.

A 3rd order passive loop filer is chosen for the tuner design. The following are simplified procedures to determine the loop filter components.

- 1. Define the basic synthesizer requirements ; oscillator frequency ranges, f_{ref}, maximum frequency step, f_{BW}(Loop Bandwidth, Hz) with deep consideration of in-out band phase noise.
- 2. Identify Kvco(VCO sensitivity, Hz/V) and Icp(charge pump current, A).
- 3. Calculate $F_{step} = f_{vco_max} f_{vco_min}$, to optimize for f_{vco_max}
- 4. Calculate $N = f_{vco_max} / f_{ref}$, to optimize for f_{vco_max} .
- 5. Calculate natural frequency, F_n ; ζ = damping factor

$$Fn = \frac{2 \times f_{BW}}{2\pi \times (\zeta + \frac{1}{4 \times \zeta'})} \quad Hz$$
(2)

6. Calculate C68;

$$C68 = \frac{I_{CP} \times K_{VCO}}{N \times (2\pi \times F_n)^2} \quad \text{Farad}$$
(3)

7. Calculate R39, and its phase noise contribution. This completes the main part of the loop filter.

³. G.Vendelin, A.Pavio, U.Rohde, Microwave Circuit Design using Linear & Nonlinear Techniques, John Wiley & Sons, New York, 1992, pp.385-491.

⁴. Hajimiri, A., & Lee, T.H., A genaral theory of phase noise in electrical oscillators, IEEE journal of solid-state circuits, Vol.33, No.2, pp.179-194.

Application Notes Revision 3.0

$$R39 = 2 \times \zeta \times \sqrt{\frac{N}{I_{cp} \times K_{vco} \times C68}} \quad \text{ohm} \tag{4}$$
$$L_{\Phi}(fm) = 20\log\left(\frac{K_{vco}\sqrt{2k \times T \times R39}}{fm}\right) \quad \text{dBc/Hz} \tag{5}^{5}$$

8. Calculate C65, which is used to damp transients from the charge pump and should be at least 20 times smaller C68

than C68, i.e.,

$$C65 \le \frac{C68}{20}$$

9. Calculate R40 & C24 within these limits and the phase noise contribution of R40 by Eq.(5).

$$\tau 1 = C68 \times R39, \tau 2 = C24 \times R40,$$
 $0.01 < \frac{\tau^2}{\tau 1} < 0.1$

A bigger time constant results in somewhat better filtering action, but tends to be associated with lower stability.

10. In order to have the confidence in the stability of the loop, an open loop analysis is performed to estimate the gain and phase margin. By closed loop analysis we can obtain the frequency response & transient response of the loop. We use a mathmatic tool to analyse these parameters though a spreadsheet program is enogh for the above calculations.

Typically, the crystal oscillator used for the reference has very good phase noise that they levels off near 10kHz offset at around -150dBc/Hz. The free running oscillator to be phase locked typically has much higher close-in noise but continues down to around -120dBc/Hz beyond 1MHz. At some offset the reference noise multiplied up to the output frequency becomes higher than the oscillator's free running noise. This is the point where normally the loop bandwidth is set. Inside the loop the oscillator noise is improved by the reference, yet outside the loop is not degraded by the reference. Because of the wide tuning range of the oscillator, the loop bandwidth should be very carefully chosen with deep consideration of the noise contribution mechanism.

The phase noise level within the loop bandwidth can be approximated by

$$Close_{in}_{phase_{noise}} = (1Hz_{normalized}_{phase_{noise}} floor) + 20 \log N + 10 \log f_{ref}$$
 (6)

There are other sources of phase noise that need to be considered when designing the Half NIM. One of the most common sources of noise is the power supply to the IC. This can be caused in many ways, but most commonly are due to supply ripple and electric or magnetic coupling to Vcc line. Proper PCB layout and necessary AC blocking are critical to ensure decent noise performance. The signal line with highest level in the Half NIM is the IF output line, and all those sensitive blocks like oscillator, loop filter and long DC lines should be well-protected from coupling from IF lines.

1.6. IF Block

TUA6039-2 has separated mixer outputs and SAW driver inputs to realize an IF filter of band pass filter structure that helps much better adjacent channel rejection. Especially in simul-casting signal environment as in Fig.5, it is a big advantage combined with internal AGC of TUA6039-2 to efficiently suppress strong adjacent PAL signals. The tuner provides a balanced IF output to drive directly a SAW filter. The AGC Controlled amplifier on-chip feeds out the IF signal directly to the demodulator IC.

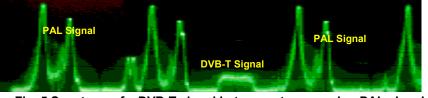


Fig. 5 Spectrum of a DVB-T signal between strong analog PAL signals

⁵. G.Vendelin, A.Pavio, U.Rohde, Microwave Circuit Design using Linear & Nonlinear Techniques, John Wiley & Sons, New York, 1992, pp.436.

2. PCB

Double-sided, 1.0 mm thickness FR4 PCB is used for the half NIM design.

3. TUA 6039-2, One-Chip Multimedia Tuner IC with IF Amplifier

3.1 Highlights

The core of the half NIM is the one-chip MOPLL IC TUA 6039-2, which works from 3.3V~5V.

The following are some of the outstanding features:

Features

General

- Supply voltage 3 to 5.5 Volt
- Suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DAB, ATSC and Open Cable
- Narrowband RF AGC detector for internal tuner with
 - 5 programmable take over points
 - 2 programmable time constants
 - RF AGC buffer output
- Low phase noise
- Full ESD protection
- Qualified according to JEDEC for consumer applications

Mixer/Oscillator

- Three band tuner
- Unbalanced highohmic LOW input
- Balanced lowohmic MID input
- Balanced lowohmic HIGH input
- · Two pin oscillators for LOW/MID band
- · Four pin oscillator for HIGH band

Advancement and New Features of TUA6039-2:

- Loop-Thru Function Simplifies Alignment and Production Process There would be no longer external damping resistors which is necessary to disable the IF filter so as to test the RF filter performance and characteristics
- RF AGC Switch Simplifies the Adoption of External RF AGC Voltage There would be no longer Jumpers to select internal or external RF AGC. Simply select via IIC
- Crystal Buffer Allows Direct Connection to a Baseband with 4MHz Xtal Input RF AGC Buffer Reduces Impact from MOSFET to Tuner IC With RF AGC Buffer, RF AGC voltage can be measured without disturbing the RF AGC performance of the Tuner
- NPN port P4 can also be used as ADC input

SAW filter driver and IF-Amplifier

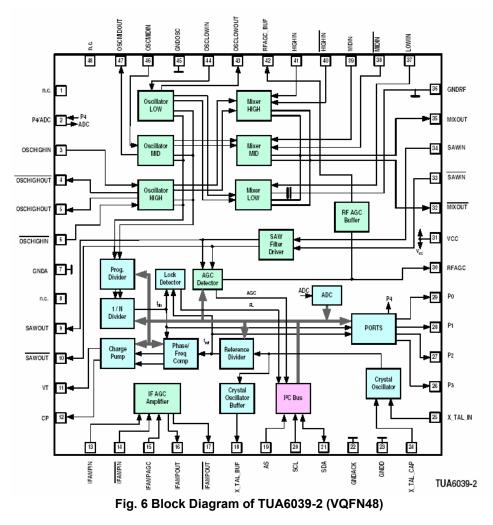
- 4 IF pins to connect a 2 pole bandpass
- Symmetrical SAW filter driver
- Fully balanced IF AGC amplifier

PLL

- I²C bus
- 4 pin-programmable I²C addresses
- High voltage VCO tuning output
- 4 PNP ports, 1 NPN port/ADC input
- Internal LOW/MID/HIGH band switch
- X_TAL 4 MHz, X_TAL buffer output
- 6 reference divider ratios
- 4 charge pump currents

Power management

Bus controlled power down mode


Application

 The IC is suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DAB, ISDB-T, Open Cable and ATSC tuners.

3.2 Block diagram

In the block diagram the internal structure of the IC is shown in Fig.6.

TUA6039-2 combines a mixer-oscillator block with a digitally programmable phase locked loop (PLL) for use in broad band multimedia front-end applications. The mixer-oscillator block includes three mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, an IF amplifier, a reference voltage source, and a band switch. Mixer outputs and IF amplifier inputs are separated to make it possible to realize a band pass IF filter to suppress adjacent channels efficiently.

The PLL block with four independently selectable chip addresses forms a digitally programmable phase locked loop. With a 4 MHz balanced reference quartz oscillator, the PLL permits precise setting of the frequency of the tuner oscillator up to 1024 MHz in increments, f_{ref} of 31.25, 50, 62.5, 125, 142,86 or 166.667 kHz. The tuning process is controlled by a microprocessor via l²C bus. The device has 5 output ports, one of them (P4) can also be used as ADC input port. A flag is set when the loop is locked. The lock flag can be read by the processor via the l²C bus. By means of 4 programmable charge pump current, 50, 125, 250, 650uA tuner designers can choose an adequate charge pump current depending on their own loop filter design, frequency usage, and in/out band phase noise requirement.

4. Alignment

4.1 Alignment Setup

Sweep generator:

Rhode & Schwarz polyscope

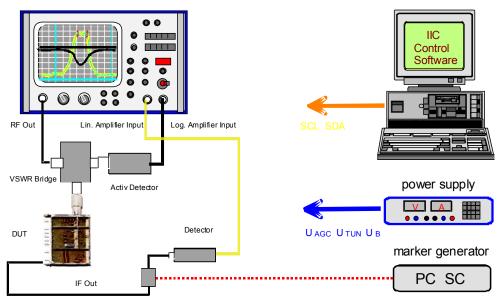
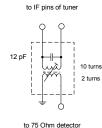



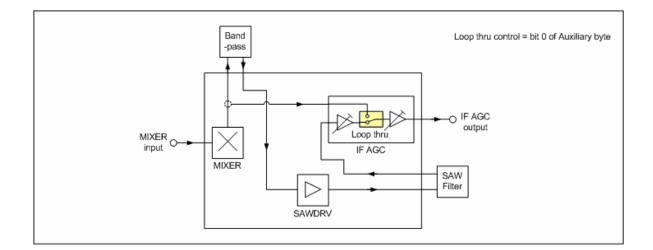
Fig. 7 Half NIM Alignment Setup

This is an example of analog tuner alignment setup. The same setup can be used to align RF performance of DVB-T Half NIM. IF center frequency of 36MHz will be used for the overall alignment, and 3 points of IF frequencies, 32, 36 & 40MHz should be monitored to align in-channel characteristics. Instead of a Polyscope we can use any type of network analyzer which has a conversion loss measurement function. With such a general-purpose network analyzer the system bandwidth and sampling points of the instrument should be adjusted for best resolution.

The sweep generator is connected via a return loss bridge to the antenna input of the tuner. Because of the balanced SAW driver output the 75 Ω detector has to be connected via a dummy BALUN simulating the SAW filter input impedance to the tuner output.

This dummy BALUN is also used for the measurements in the test set-up.

For digital Half NIM alignment only IF center frequency of 36 MHz can be used all through the alignment and measurement. The tuner is designed to cover IF bandwidth of 8MHz between 32MHz ~ 40MHz.


The tuning voltage of each band should not fall below 0.7 V for lowest frequency and 25.5 V for highest frequency.

There are two methods to connect the tuner/half NIM output when doing alignment for the tuner or half NIM with TUA6039, which are described as follows:

1. Traditional method connects the output at the SAW_OUT of the TUA6039 so that the RF characteristic of the tuner can be measured. This will need the testing probe to be connected to the internal test pin of the tuner/half NIM while damping resistor to be added to the IF filter to show the real RF curve;

2. Due to the new Loop_Through function of TUA6039, tuner/half NIM alignment can also be done without implementation of the internal test pin or requirement of the damping resistor at the IF filter. The measurement equipment, i.e. Spectrum analyzer or network analyzer can be directly connected to the tuner/half NIM IF output via a BALUN to perform the measurement and alignment. In order to monitor the RF characteristic, the Loop_Through is to be set to "enable" via IIC. The internal diagram to illustrate the operation of Loop_Through function is shown as follows:

When the Loop_Through function is enabled, the Signal at the MIXER_OUT will be brought directly to the IF output via IF Amplifier. It would bypass the IF filter, SAW_Driver and the SAW filter so that the real RF characteristic/curve can be shown at the IF output. This would simplify the alignment procedure and the design of a testing jig for alignment.

4.2 Alignment Procedures

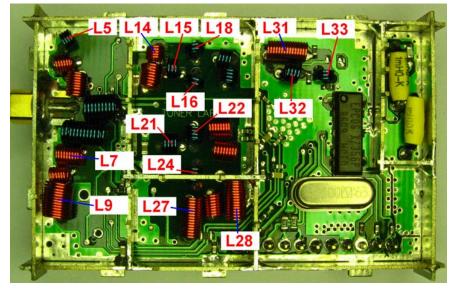


Fig. 8 Picture of Half NIM after Alignment

Some coils should be pre-formed before starting alignment to align easily. Also all the coils must be checked whether they are in the right form, not distorted abruptly.

- Current consumption and Tuning Voltage of the tuner must be monitored all through the alignment to check the proper operation of the IC. If the current consumption is over 200mA, either IC, MOSFET might seem to be damaged or there might be short circuit in the hardware. IF_{center} shall be set at 36MHz.
- 2. UHF alignment :
 - Set the tuner to the highest channel of UHF band, frequency = 858MHz and then adjust L33 to have Vt = 22.5 ± 0.3 V.
 - Adjust L5 for VSWR.
 - For RF curve & tilt adjust L15 first, and depending on the result, adjust L16 & L18. For high-end fine-tuning, adjust L14 a little bit. If the pre-formation of L16, L18 is O.K, we need to touch only L15 & L14.
 - Sweep the whole band or selected channels, and do a fine tune once again if necessary.
- 3. VHF High alignment :
 - Set the tuner to the highest channel of VHF High band, frequency = 442MHz and then adjust L32 to have Vt = 22.5 ± 0.3 V.
 - Adjust L7 for VSWR.
 - For RF curve & tilt adjust L21 first, and depending on the result, adjust L22 & L24 a little bit.
 - Sweep the whole band or selected channels, and do a fine tune once again if necessary.
- 4. VHF Low alignment :
 - Set the tuner to the highest channel of VHF Low band, frequency = 157MHz and then adjust L31 to have Vt = 25.2 ± 0.3 V.
 - Adjust L9 for VSWR.
 - For RF curve & tilt adjust L27(Main) & L28 a little bit.
 - Sweep the whole band or selected channels, and do a fine tune once again if necessary.

5. Half NIM Electrical Characteristics:

Unless otherwise specified, all data are measured in conditions of supply voltage of 3.3 V \pm 5%, AGC voltage of 3.0 V \pm 5%, ambient temperature of 25 ° C \pm 5%, f_{ref} of 166.667KHz.

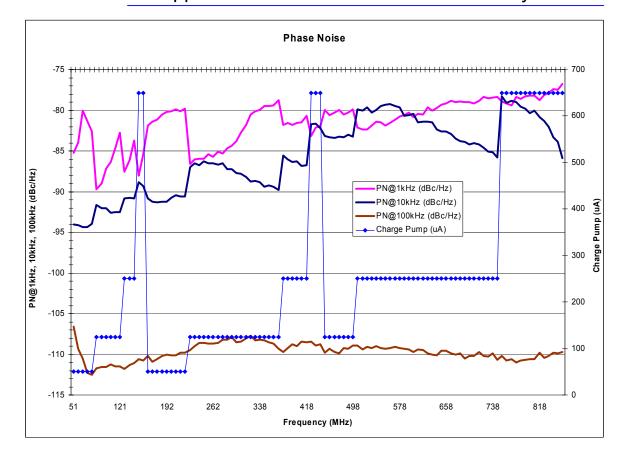
Parameter	Min.	Тур.	Max.	Unit				
Frequency range								
VHFL 51 ~ 157 MHz								
VHFH 164 ~ 442 MHz								
UHF 450 ~ 858 MHz								
IF center frequency		36						
				MHz				
Frequency margin at low and high ends of each band	1.5							
Supply voltages and o	currents			-				
Supply voltage +Vcc Pin 💥	3.0	3.3	5.5	V				
Supply current +Vcc Pin			160	mA				
Input connector: MMCX								
RF Characteristi	ics.							
Input impedance Output impedance with IF dummy		75 75		Ω				
VSWR at nominal gain and during AGC			5					
External AGC voltage for max RF gain	2.7	3.0	Vcc	V				
External AGC voltage for min RF gain	0.5	2.0						
Internal AGC voltage		3.0						
AGC range VHFL	50			dB				
AGC range VHFH	45							
AGC range UHF	45							
Tuning sensitivity VHFL	1		10	MHz/V				
Tuning sensitivity VHFH	5		23					
Tuning sensitivity UHF	3		36					
Power gain	38	43		dB				
(Tuner Part Only)								
Gain taper in each band (Tuner Part Only)			5	dB				
Naisa finnas MUEL (Tarran Dart Onla)		0.5						
Noise figure VHFL (Tuner Part Only) Noise figure VHFH (Tuner Part Only)		6.5 5.5	8	dB				
Noise figure UHF (Tuner Part Only)		4.5	8					

Application Notes Revision 3.0

May 2007

Parameter	Min	Тур	Max	Unit
RF bandwidth (3 dB) VHFL		10	20	MHz
RF bandwidth (3 dB) VHFH		10	20	
RF bandwidth (3 dB) UHF		10	20	
		10	20	
Image rejection VHFL	65	70		dB
Image rejection VHFH	60	65		
Image rejection UHF	55	60		
IF rejection channel E2(frequency = 51MHz)	75			dB
Other channels	80			u D
Input 1 dB compression Point	70			
input i dB compression Foint	70			dBuV
Input IP3 (two tone 1MHz apart)	85			_
Input level producing 50 kHz of oscillator detuning	80			_
(PLL open loop)	00			
Oscillator shift with supply voltage variation of ± 10 %			± 250	kHz
(open loop)				
Oscillator temperature drift 2540 °C(open loop)			1	MHz
Antenna Leakage up to 1GHz			30	dBuV
Phase Noise 1KHz offset	75			dBc/Hz
10KH offset wide loop bandwidth ⁶	75			
100KHz offset	105			
Phase Noise, 1KHz offset	75			-
10KH offset <i>narrow loop bandwidth</i> ⁷	90			
100KHz offset	110			
	110			
DC-DC Converter Spurious Rejection	52	55		dBc
Cross modulation ⁸				
In_Channel / disturbing voltage producing 1% of Xmod	65			dBµV
N±1 Channel / disturbing voltage producing 1 % of Xmod	70	+		
				-
N±2 Channel / disturbing voltage producing 1 % of Xmod	75			

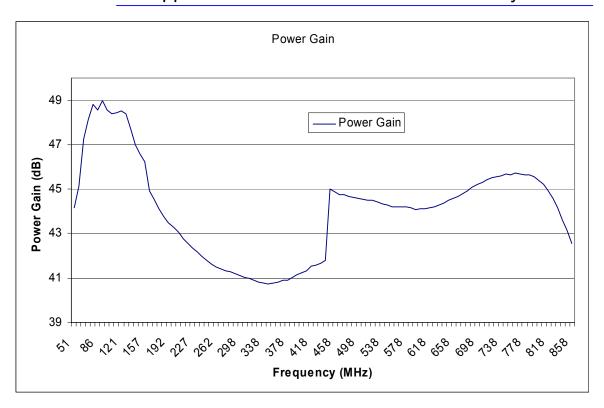
All Measurement data in the following pages are based on 3.3V operation voltage and TUA6039-2 C1 typical sample.

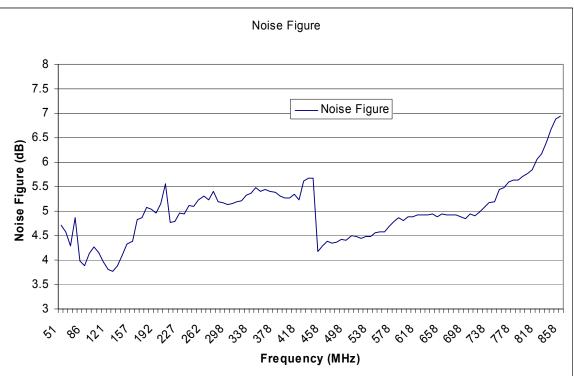

X To use Vcc at 3.3V, set R48 to 0 Ohm; To use Vcc at 5.0V, set R48 to 150 Ohms

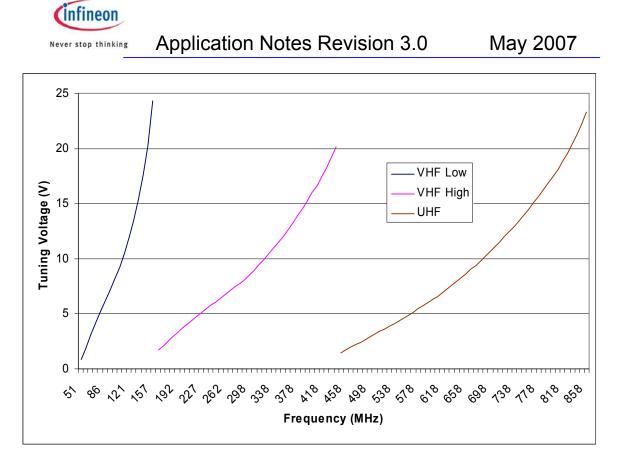
⁶. Loop filter components for wide loop bandwidth; C68=6.8nF, C65=33pF, R39=150Kohm. This would be suitable for ______ 166.67kHz Reference Frequency

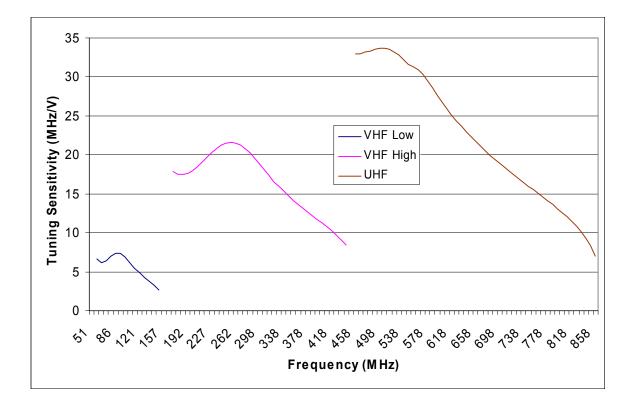
[.] Loop filter components for narrow loop bandwidth; C68=47nF, C65=470pF, R39=100Kohm. This would be suitable for Hybrid Application to cover both 62.5kHz and 166.67kHz Reference Frequency

⁸. Wanted signal 60 dB μ V, unwanted signal 80% AM modulated with 1 kHz, AGC set to full RF Gain

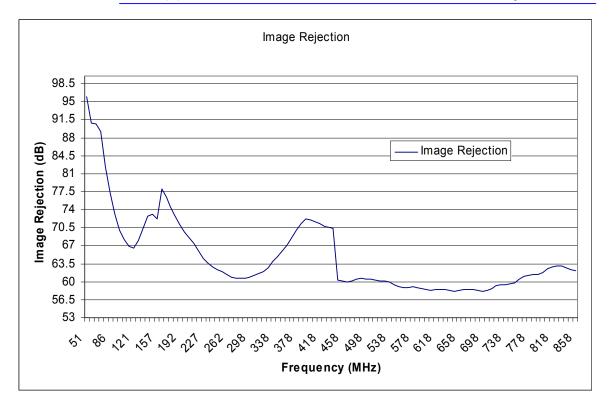


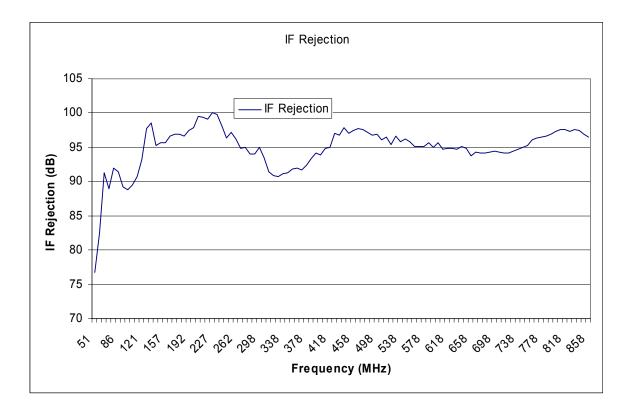

Charge Pump Setting:


VHF Low 51MHz~ 79MHz 128MHz~142MHz	50uA 250uA	86MHz~121MHz 149MHz~157MHz	125uA 650uA
VHF High 164MHz~220MHz 378MHz~418MHz	50uA 250uA	227MHz~370MHz 426MHz~442MHz	125uA 650uA
UHF 450MHz~498MHz 754MHz~858MHz	125uA 650uA	506MHz~746MHz	250uA

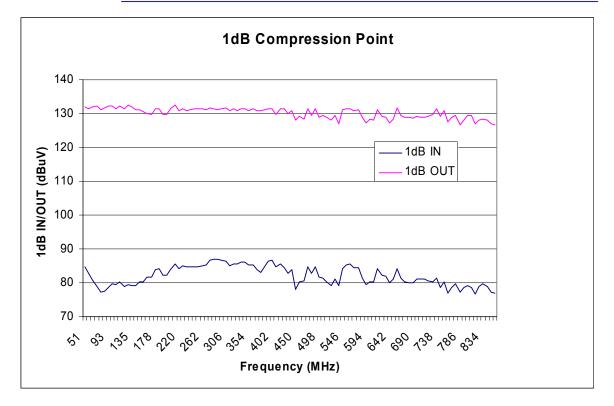


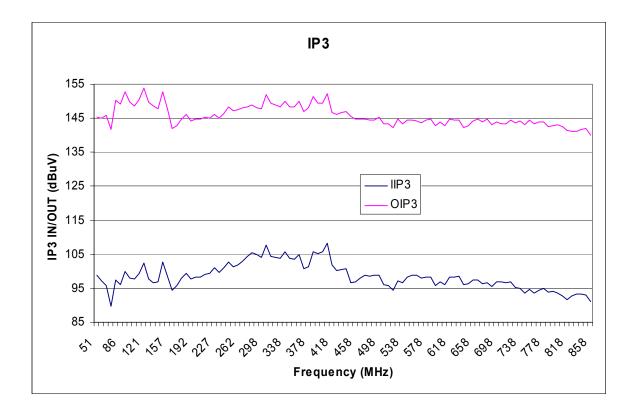
Application Notes Revision 3.0



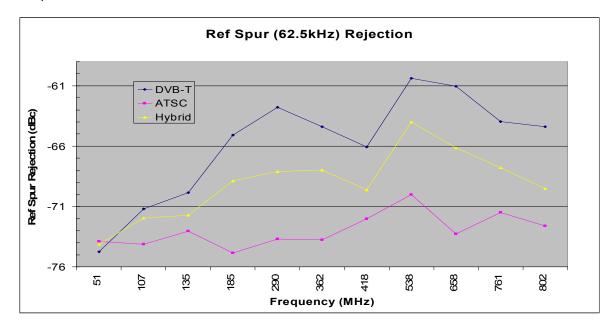


18 Application Engineering


Application Notes Revision 3.0



19 Application Engineering



20 Application Engineering

The following graph shows the 62.5kHz reference frequency rejection ratio based on different loop filter and its post filter configuration. The measurement result is based on TUA6039-2 C1 typical sample

Referring to the schematic diagram of the reference mini half nim with TUA6039-2, the loop filter and its post filter is configured according to following component values:

DVB-T:

DVB-T:	Main Loop Filter Config: Post Filter Config:	C68 = 6.8nF C65 = 33pF R39 = 150kOhm R40 = 33kOhm R45 = 2.2kOhm C41 = 3.3nF C24 = 15nF
ATSC:	Main Loop Filter Config:	C68 = 47nF
	Main Loop Filler Comig.	C65 = 470pF R39 = 100kOhm
	Post Filter Config:	R40 = 330kOhm R45 = 15kOhm
		C41 = 6.8nF C24 = 22nF
Hybrid:		
riyona.	Main Loop Filter Config:	C68 = 6.8nF C65 = 33pF R39 = 100kOhm
	Post Filter Config:	R39 = 100kOhm R40 = 150kOhm R45 = 2.2kOhm
		C41 = 3.3nF C24 = 15nF

The above test result shows that the rejection ratio for reference frequency of 62.5kHz is dependant of the loop filter and post filter configuration. This application note covers only DVB-T reception with reference frequency of 166.67kHz. Although Loop filter can be modified to cover both 166.67kHz and 62.5kHz for hybrid purposes, there is always compromise among Phase Noise, Reference Frequency Rejection and PLL Lock-in Time. It is strongly recommended that designers decide the reference frequency first (62.5kHz or 166.67kHz or both) before adopting the relevant loop filter and post filter configuration.

6. PLL Programming⁹

Logic allocation of Write Data

	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB	Ack
Address byte	1	1	0	0	0	MA1	MA0	0	Α
Prog. divider byte 1	0	n14	n13	n12	n11	n10	n9	n8	Α
Prog. divider byte 2	n7	n6	n5	n4	n3	n2	n1	n0	Α
Control info byte 1	1	СР	T2	T1	T0	RSA	RSB	OS	Α
Bandswitching byte	XTB	NA	NA	P4	P3	P2	P1	P0	Α
Auxiliary byte	ATC	AL2	AL1	AL0	0	0	0	LP	Α

Divider ratio:

 $N = 16384 \times n14 + 8192 \times n13 + 4096 \times n12 + 2046 \times n11 + 1024 \times n10 + 512 \times n9 + 256 \times n8 + 128 \times n7 + x \, 64 \times n6 + 32 \times n5 + 16 \times n4 + 8 \times n3 + 4 \times n2 + 2 \times n1 + n0$

Address selection: (Vs = 5 V)

MA1	MA0	voltage at CAS pin
0	0	(0 ~ 0.1) x Vs
0	1	Open
1	0	(0.4 ~ 0.6) x Vs
1	1	(0.9 ~ 1) x Vs

Band selection (via BandSwitching byte)

UHF	VHF2	VHF1
100 001 00	100 000 10	100 000 01

Charge Pump Current

Icp(uA)	Mode	СР	T2	T1	Т0
50	Normal	0	0	0	X
250	Normai	1	0	v	X
50		0			0
125	Extended	0	4	4	1
250		1			0
650		1			1

Reference Divider Rations

Reference Divider Ratio	f _{ref} (KHz) ¹⁰	Mode	T2	T1	RSA	RSB
80	50	Normal	0	0	0	0
128	31.25	Normal	0	0	0	1
24	166.67	Х	X	X	1	0
64	62.5	Х	X	X	1	1
32	125	Extended	1	1	0	0
28	142.86	Extended	1	1	0	1

Tuner PLL control software, WinPLL is also available along with the evaluation board & the reference tuner.

¹⁰. with 4MHz Quartz

⁹. Please refer to chapter 5.2 of TUA6039-2 data sheets for more details of IIC programming

Never stop thinking Application Notes Revision 3.0

May 2007

Designators	Footprint	Value	Tolerance	Remarks	Manufacturer
Passive Devices					
General Devices					
C1	0402	330p	5%	GRM15/18	Murata
C2	0402	220p	5%	GRM15/18	Murata
C3	0402	12p	5%	GRM15/18	Murata
C4	0402	1n	10%	GRM15/18	Murata
C5	0402	2p2	5%	GRM15/18	Murata
C6	0402	OPEN	5%	GRM15/18	Murata
C7	0402	4n7	10%	GRM15/18	Murata
C8	0402	0p5	5%	GRM15/18	Murata
C9	0402	1n	10%	GRM15/18	Murata
C10	0402	4n7	10%	GRM15/18	Murata
C11	0402	4n7	10%	GRM15/18	Murata
C12	0402	4n7	10%	GRM15/18	Murata
C13	0402	120p	5%	GRM15/18	Murata
C14	0402	4n7	10%	GRM15/18	Murata
C15	0402	470p	10%	GRM15/18	Murata
C16	0402	4n7	10%	GRM15/18	Murata
C18	0402	4n7	10%	GRM15/18	Murata
C19	0402	100n	10%	GRM15/18	Murata
C20	0402	4n7	10%	GRM15/18	Murata
C21	0603	4n7	10%	GRM15/18	Murata
C22	0402	4n7	10%	GRM15/18	Murata
C23	0402	4n7	10%	GRM15/18	Murata
C24	0603	15n	10%	GRM15/18	Murata
C25	0603	4n7	10%	GRM15/18	Murata
C26	0402	270p	5%	GRM15/18	Murata
C27	0402	1p2	5%	GRM15/18	Murata
C28	0402	100p	5%	GRM15/18	Murata
C29	0402	12p	5%	GRM15/18	Murata
C30	0402	22p	5%	GRM15/18	Murata
C31	0402	27p	5%	GRM15/18	Murata
C32	0402	27p	5%	GRM15/18	Murata
C33	0402	 1p8	5%	GRM15/18	Murata
C34	0402	220p	5%	GRM15/18	Murata
C35	0402	220p	5%	GRM15/18	Murata

23 Application Engineering

Application Notes Revision 3.0

May 2007

Designators	Footprint	Value	Tolerance	Remarks	Manufacturer
C36	0402	470p	10%	GRM15/18	Murata
C37	0402	470p	10%	GRM15/18	Murata
C38	0402	22p	5%	GRM15/18	Murata
C39	0402	470p	10%	GRM15/18	Murata
C41	0402	3n3	10%	GRM15/18	Murata
C42	0402	4n7	10%	GRM15/18	Murata
C43	0603	4n7	10%	GRM15/18	Murata
C44	0603	4n7	10%	GRM15/18	Murata
C45	0603	100p	5%	GRM15/18	Murata
C46	0603	100p	5%	GRM15/18	Murata
C47	0402	4n7	10%	GRM15/18	Murata
C48	0402	3n3	5%	GRM15/18	Murata
C49	0402	2p7	5%	GRM15/18	Murata
C50	0402	2p2	5%	GRM15/18	Murata
C51	0603	39p	5%	GRM15/18	Murata
C52	0402	1p5	5%	GRM15/18	Murata
C53	0402	1p2	5%	GRM15/18	Murata
C54	0402	82p	5%	GRM15/18	Murata
C55	0402	1p2	5%	GRM15/18	Murata
C56	0402	1p2	5%	GRM15/18	Murata
C57	0402	1p2	5%	GRM15/18	Murata
C58	0402	1p2	5%	GRM15/18	Murata
C59	0402	22p	5%	GRM15/18	Murata
C60	0402	4n7	10%	GRM15/18	Murata
C61	0402	4n7	10%	GRM15/18	Murata
C62	0603	4n7	10%	GRM15/18	Murata
C63	0402	4n7	10%	GRM15/18	Murata
C64	0402	4n7	10%	GRM15/18	Murata
C65	0402	33p	5%	GRM15/18	Murata
C66	0402	33p	5%	GRM15/18	Murata
C67	0402	2р	5%	GRM15/18	Murata
C68	0603	6n8	10%	GRM15/18	Murata
C69	0402	100n	10%	GRM15/18	Murata
C70	0603	150n	10%	GRM15/18	Murata
C71	0603	4n7	10%	GRM15/18	Murata
C72	0603	4n7	10%	GRM15/18	Murata
C74	0402	33p	5%	GRM15/18	Murata
C75	0402	51p	5%	GRM15/18	Murata
C76	0402	22p	5%	GRM15/18	Murata

Application Notes Revision 3.0

May 2007

Designators	Footprint	Value	Tolerance	Remarks	Manufacturer
C77	0402	22p	5%	GRM15/18	Murata
C79	0402	22p 2p2	10%	GRM15/18 GRM15/18	Murata
C80	0402	2p2 5p6	5%	GRM15/18	Murata
C80	0402		10%	GRM15/18	Murata
C81	0402		10%	GRM15/18 GRM15/18	Murata
C82		<u>10n</u>	5%		
	0603	220p		GRM15/18	Murata
C84	0402	4n7	10%	GRM15/18	Murata
C85	0603	47n	10%	GRM15/18	Murata
C87	0402	22n	10%	GRM15/18	Murata
C88	0402	47n	10%	GRM15/18	Murata
C89	0402	18p	5%	GRM15/18	Murata
C90	0402	18p	5%	GRM15/18	Murata
C91	0402	4n7	10%	GRM15/18	Murata
C92	0402	4n7	10%	GRM15/18	Murata
C93	0402	0p5	5%	GRM15/18	Murata
C94	0402	0p5	5%	GRM15/18	Murata
C100	0603	0p5	5%	GRM15/18	Murata
All Capacitors have a voltage rating of 50V or above					
J1	0402	OPEN			General Brand
J2	0402	OPEN			General Brand
R1	0402	33K	5%		General Brand
R2	0402	33K	5%		General Brand
R3	0402	33K	5%		General Brand
R4	0402	10K	5%		General Brand
R5	0603	33K	5%		General Brand
R6	0402	33K	5%		General Brand
R7	0402	10K	5%		General Brand
R8	0402	10K	5%		General Brand
R10	0603	33K	5%		General Brand
R11	0603	5R6	5%		General Brand
R12	0603	22	5%		General Brand
R13	0402	22	5%		General Brand
R14	0402	33K	5%		General Brand

Application Notes Revision 3.0

May 2007

Designators	Footprint	Value	Tolerance	Remarks	Manufacturer
R15	0402	10K	5%		General Brand
R16	0402	100K	5%		General Brand
R17	0402	15	5%		General Brand
R18	0603	150K	5%		General Brand
R19	0402	150K	5%		General Brand
R20	0603	33K	5%		General Brand
R21	0603	33K	5%		General Brand
R22	0603	33K	5%		General Brand
R23	0603	33K	5%		General Brand
R25	0603	0	5%		General Brand
R26	0402	47K	5%		General Brand
R27	0603	0R	5%		General Brand
R28	0402	33K	5%		General Brand
R29	0603	330	5%		General Brand
R30	0603	330	5%		General Brand
R31	0402	12	5%		General Brand
R32	0603	2k7	5%		General Brand
R33	0402	10	5%		General Brand
R34	0402	2K7	5%		General Brand
R36	0402	2K2	5%		General Brand
R37	0402	2K2	5%		General Brand
R39	0402	100K	5%		General Brand
R40	0603	150K	5%		General Brand
R41	0402	15	5%		General Brand
R42	0402	1K2	5%		General Brand
R44	0402	10K	5%		General Brand
R45	0402	2K2	5%		General Brand
R46	0402	100K	5%		General Brand
R48	0805	150/0	5%		General Brand
Special Devices					
F1	SMT	X7356P			EPCOS
Q1	Height 3.5mm	4MHz 16~20pF	AT- 41(SP)		NDK
Customized Devices					
L1		12,0.4,2.2 CW			Customized

Application Notes Revision 3.0

May 2007

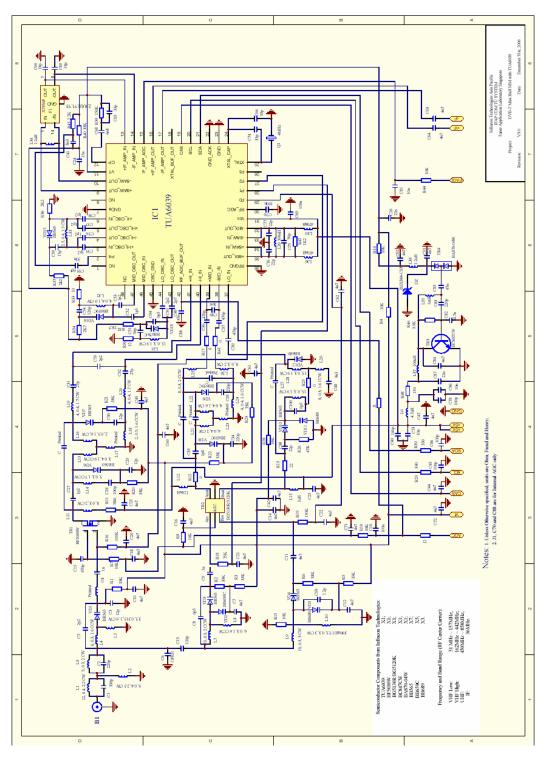
Designators	Footprint	Value	Tolerance	Remarks	Manufacturer
L2		9,0.4,2.5 CW			Customized
L3		9,0.3,2 CW			Customized
L4		6,0.3,1.6 CCW			Customized
L5		3.5,0.315,1.6 CW			Customized
L7		9,0.3,2 CCW			Customized
L8		6,0.3,1.6 CCW			Customized
L9		13,0.3,3 CW			Customized
L10	0805	390nH		LQW2BH	Murata
L11		8,0.3,2 CW			Customized
L12		15,0.3,1.9 CW			Customized
L13	0805	3.9uH			General Brand
L14		5,0.3,1.7 CCW			Customized
L15		3,0.4,1.9 CCW			Customized
L16		2,0.5,1.6 CW			Customized
L18		2,0.5,1.6 CCW			Customized
L19		4,0.4,1.7 CW			Customized
L20		4,0.4,1.7 CW			Customized
L21		4,0.4,2 CW			Customized
L22		4,0.4,1.6 CW			Customized
L24		4,0.4,1.6 CCW			Customized
L25		8,0.3,2 CCW			Customized
L26		8,0.3,2,CW			Customized
L27		15,0.3,2 CW			Customized
L28		15,0.3,2 CW			Customized
L29		8,0.3,1.6 CCW			Customized
L30	0603	470nH		LQW18A	Murata
L31		15,0.3,1.9 CW			Customized
L32		4,0.4,1.9 CW			Customized
L33		2.5,0.4,1.5CW			Customized
L34	0805	1.2uH		LQM21F	Murata
L35		1mH			General Brand
L36	0603	470nH		LQW18A	Murata
L37		100uH			General Brand
L38	0805	1.2uH		LQM21F	Murata
L39	0603	390nH		LQW18A	Murata

Application Notes Revision 3.0

May 2007

Designators	Footprint	Value	Tolerance	Remarks	Manufacturer
Active Devices					
Integrated Chips					
IC	VQFN-48	TUA6039-2			INFINEON
Transisters/Diados					
Transistors/Diodes	007040	DECODONI			
TR1	SOT343	BF5030W			INFINEON
TR2	SOT363	BG5120K			INFINEON
TR3	SOT323	BC847CW			INFINEON
TR4	SOT323	BAS70-04W			INFINEON
DZ	SOD323	BZX384-C33			PHILIPS
Varactor Diodes	000 00	DD505			
VD1	SCD-80	BB565			INFINEON
VD2	SCD-80	BB659C			INFINEON
VD3	SCD-80	BB565			INFINEON
VD4	SCD-80	BB565			INFINEON
VD5	SCD-80	BB689			INFINEON
VD6	SCD-80	BB565			INFINEON
VD7	SCD-80	BB565			INFINEON
VD8	SCD-80	BB659C			INFINEON
VD9	SCD-80	BB659C			INFINEON
VD10	SCD-80	BB565			INFINEON
VD11	SCD-80	BB689			INFINEON
VD12	SCD-80	BB689			INFINEON
VD13	SCD-80	BB689			INFINEON
VD14	SCD-80	BB659C			INFINEON
VD15	SCD-80	BB565			INFINEON
Mechanincal Devices					
RF Input Connector					
C1	SMT Female	82 MMCX-S50-0- 2/111KE			HUBER&SUHNER
Interface Pin					
C2		11-Pin Pitch 2mm			General Brand
RECOMMENDED TESTING ADAPTOR					
MMCX male to BNC female		33 MMCX-BNC-50- 1/111 UE			HUBER&SUHNER

1) All the coils are full-turn or half-turn types. The Unit of the Diameter of Coil & Wire is 'mm';


Full-Turn, CCW

- 2) The SMD component list above is made with reference to the tuner with 1 x MOSFET and 1 x Dual MOSFET;
- 3) To download the product from Infineon Technologies, please browse to the website <u>www.infineon.com;</u>
- 4) For more information regarding third-party components such as RF connectors, SAW filters, and Crystal, please browse to the relevant websites listed below:

www.hubersuhner.com www.epcos.com www.ndk.com www.murata.com www.philips.com

8. Circuit and Layout¹¹ 8.1 Circuit diagram

30 Application Engineering

8.2 Layout

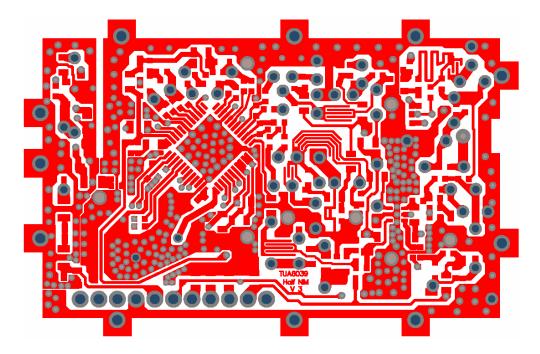


Fig. 9 Component Side View

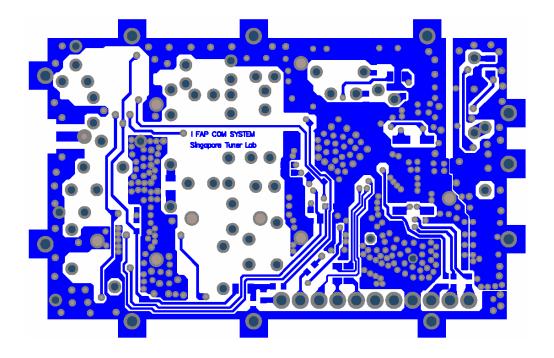
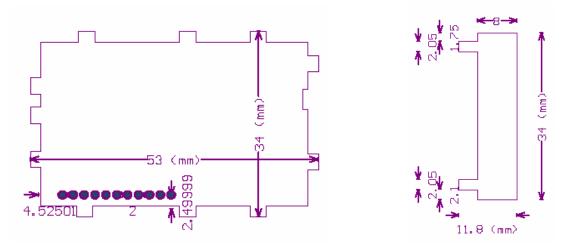


Fig. 10 Air Coils Side View

31 Application Engineering



8.3 Pin Layout and Outline Dimension

To give an impression of the real sized tuner, a layout of the tuner PCB is given in Fig. 11. The pin layout of the Mini Tuner is described as followings:

- 1. Tuner AGC Output;
- 2. Tuning Voltage Output;
- 3. Chip Address Selection;
- 4. Serial Clock Input;
- 5. Serial Data Input/Output;
- 6. Vcca;
- 7. Vccd;
- 8. Ground;
- 9. IF AGC Input;
- 10. +IF Output;
- 11. –IF Output;

Pin #1 is at the right side and Pin #11 is at the left side.

Fig. 11 Layout of the Half NIM PCB

Important: Infineon Technologies reserves all rights to change, modify and update the specifications, schematic diagram, PCB layout and Component list without prior notice to the customers. For the latest design—Schematic, PCB and BOM which is suitable for pilot production, please refer to Infineon's Local Sales Offices, Authorized Distributors and other Agents for the update.

Communication Solutions IFAP COM Tuner Systems

11

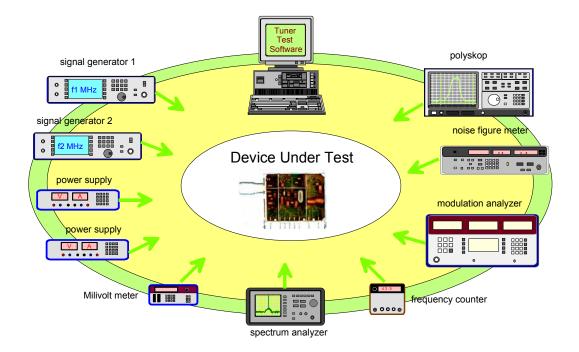
9. Automatic Tuner Test Setup of the Team

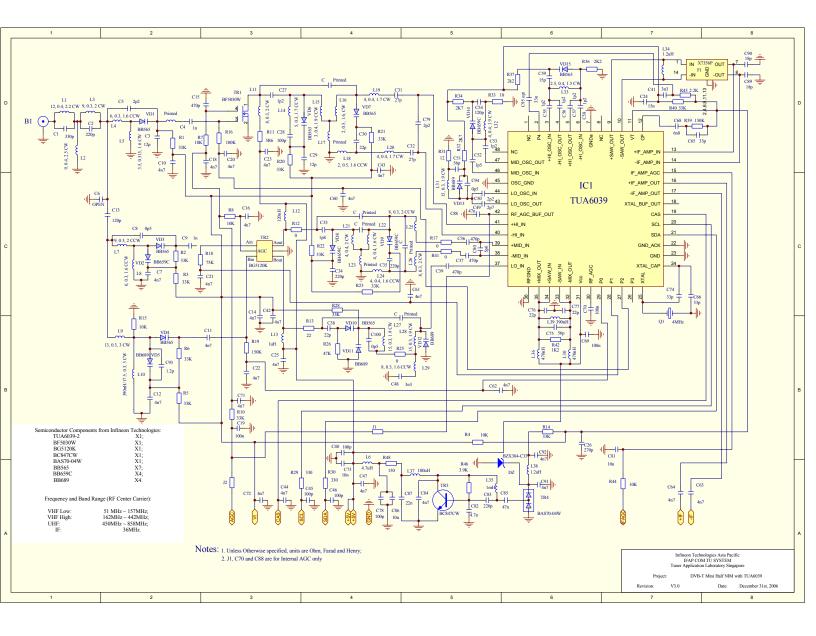
This automatic tuner set-up consists of the following RF measurement equipment:

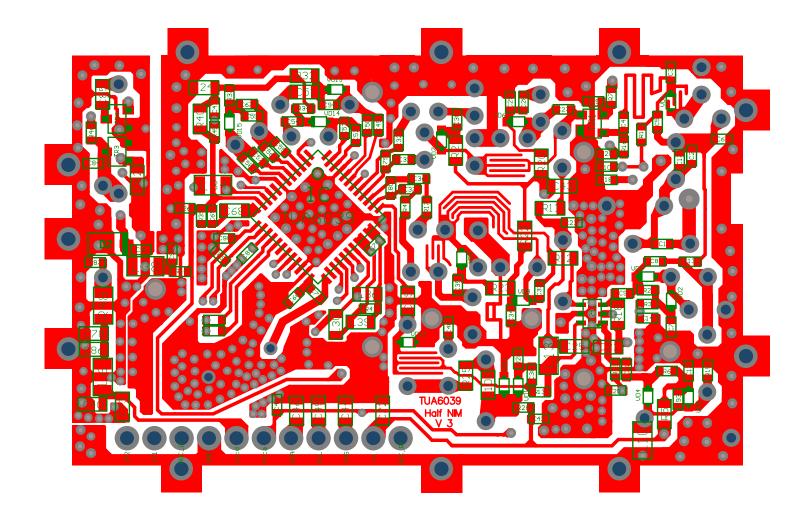
Hewlett-Packard 8970B noise meter

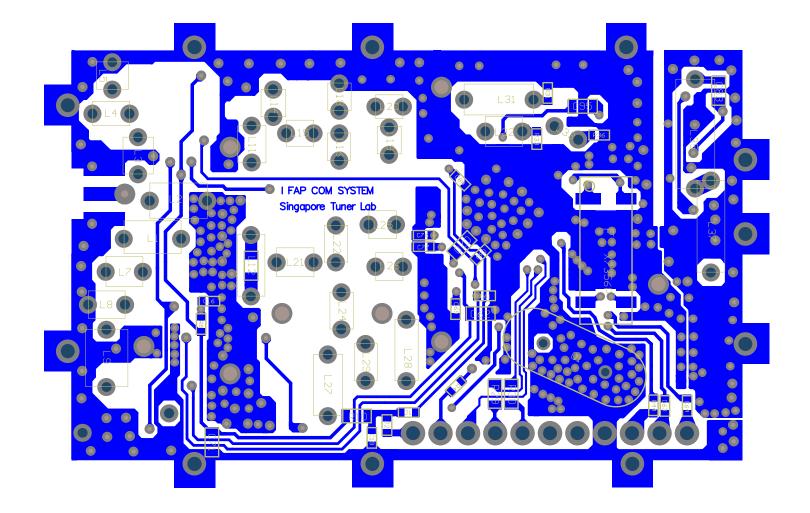
Hewlett-Packard 53131A frequency counter

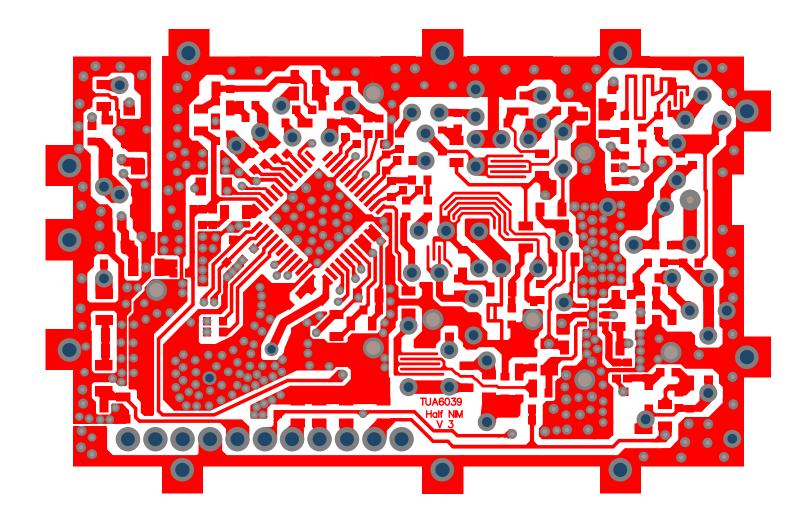
Rohde&Schwarz FSEA30 spectrum analyzer


Rohde&Schwarz FMA modulation analyzer


HP E3631A and E3632A voltage supply


Rohde&Schwarz ZWOB6 Scalar Polyskop


Marconi Instruments 2031 signal generator (2x)


All instruments are controlled via the GPIB bus by the tuner test and measurement software from PC. Test data will be attached (upon request) to tuner which is available for order through ISAR system. Please contact Infineon's local sales offices, authorized distributors and other agents for the detailed information regarding the reference mini Half NIM.

