
S1F76680 Technical Manual

NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of Economy, Trade and Industry or other approval from another government agency. All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2008, All rights reserved.

Configuration of product number

•DEVICES

Table of Contents

1
2
3
4
5
7
7
8
8
9
17
19
20
21
22
22
23
24

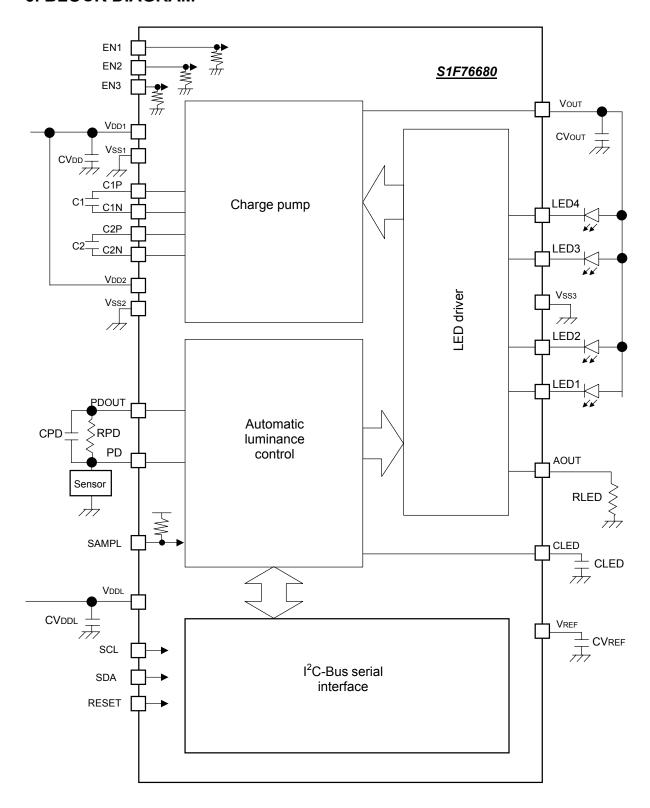
1. DESCRIPTION

S1F76680 is a LED driver that can drive four (three) white LEDs lamps for backlighting in parallel connection.

Necessary power is supplied to LED by the charge pump type DC/DC converter incorporated in S1F76680.

Also, the charge pump type DC/DC converter selects 1x or1.5x voltages on its own according to necessity. Maximum driving current to LED can be set with one external resistor.

With S1F76680, LED's current value is changed in harmony with ambient brightness level, when connected with an external luminance sensor.


In this IC, a two-wire serial interface I^2C -Bus slave function is contained, and the current value in accordance with the ambient brightness can be set with a register of I^2C .

Allowing to configure the backlight that automatically selects optimal LED current value in accordance with thebrightness level of the surrounding environment, this function makes this device a optimal LED driver for mobile devices realizing high viewability and low power consumption.

2. FEATURES

- Drives four (three) white LEDs lamps in parallel connection
- Sets LED maximum current value with an external resistor
- Power saving operation due to booster magnification automatic switching function of an amp circuit
- Driving with the LED current value changed in accordance to the ambient brightness level (automatic luminance control) when connected with a luminance sensor
- Allows setting of the automatic luminance control characteristic with I²C
- Enable automatic luminance control/imperative fixed current selection with I²C
- Acquires the information on ambient brightness with I²C
- Incorporates a soft start circuit for activation with EN1 pin
- Enable automatic luminance control circuit activation/stop selection with EN2 pin
- Allows a drive at set maximum current with EN3 pin
- Mass production form QFN5-32PIN (5.0mm × 5.0mm)
- Not radiation- or light-proofed

3. BLOCK DIAGRAM

4. DESCRIPTION OF BLOCK DIAGRAM

(1) Charge pump

The charge pump is a circuit that generates voltage required for driving LED at Vout pin.

As a pump-up capacitor required to operate the DC/DC converter, connect capacitors C1 and C2 with C1P, C1N, C2P and C2N pins respectively.

Connect CVout as a storage capacitor for booster voltage generated at Vout pin.

(2) Automatic luminance control

A circuit that determines the LED current value in accordance with the ambient brightness. The ambient brightness can be evaluated by connecting a luminance sensor between PD pin and Vss

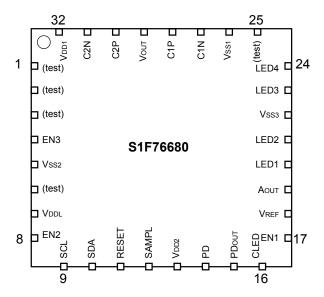
(GND), and an external resistor between PDOUT pin and PD pin.

(3) I²C -Bus serial interface

Advanced setting to this IC (selection of automatic luminance control operating status, characteristic setting, reading of brightness information, etc) can be performed externally by reading /writing an assigned register.

Since I²C on this IC only has slave function, control should be carried out externally by the master function.

(4) LED driver


The LED driver drives four (three) white LEDs lamps in parallel connection.

Connect it with RLED, a resistor for maximum current setting.

The LED driver drives LED based on the settings of I²C, automatic luminance control and RLED.

5. PIN ASSIGNMENT

(QFN5-32PIN)

Pin Name	I/O	PIN No.	Function
FIII Name	2	QFN5-32	FullCuoli
(test)	l	1	* Since this is a test pin, be sure to keep it "OPEN."
(test)	_	2	* Since this is a test pin, be sure to keep it "OPEN."
(test)	l	3	* Since this is a test pin, be sure to keep it "OPEN."
EN3	ı	4	Automatic luminance control/forced full lighting select pin. It is pulled down Internally.
Vss2	l	5	Ground pin.
(test)		6	* Since this is a test pin, be sure to keep it "OPEN."
VDDL	I	7	Input power supply pin for I ² C I/O.
EN2	ı	8	Automatic luminance control circuit activation/stop select pin. It is pulled down internally.
SCL		9	I ² C clock input pin.
SDA	I/O	10	I ² C data I/O pin.
RESET	I	11	I ² C reset (register initialization) pin
SAMPL	ı	12	Brightness evaluation sampling cycle select pin. It is pulled up internally.
VDD2	_	13	Input power supply pin.
PD		14	Sensor connect pin.
PDOUT	0	15	Sense resistor connect pin.
CLED	0	16	Pin that connects to capacitor for LED current change delay
EN1		17	Input pin for activating IC. It is pulled down internally.
VREF	0	18	Internal reference voltage pin.
AOUT	0	19	Pin that connects to resistor for LED maximum current setting.
LED1	I	20	LED1 connect pin.
LED2		21	LED2 connect pin.
Vss3		22	Ground pin.
LED3	I	23	LED3 connect pin.
LED4	I	24	LED4 connect pin. * Be sure to connect this pin to ground when using three LEDs only.
(test)		25	* Since this is a test pin, be sure to keep it "OPEN."
Vss1	_	26	Ground pin.
C1N		27	Pump-up capacitor C1 connect pin.
C1P	l	28	Pump-up capacitor C1 connect pin.
Vout	0	29	LED drive voltage output pin (LED common anode)
C2P	_	30	Pump-up capacitor C2 connect pin.
C2N		31	Pump-up capacitor C2 connect pin.
VDD1	_	32	Input power supply pin.

^{*} EXPOSED DIE ATTACH PAD (refer to the outline drawing in No.P28) in the rear surface metal part of QFN5-32 package is grounded to the same potential as Vss1=Vss2=Vss3.

Set the rear surface metal part to the open or grounding.

6. PIN DESCRIPTION

(1) Power Supply Pin

Pin Name	PIN No. (QFN5-32)	Function
VDD1	32	Power supply pin.
VDD2	13	Supply voltage that obtains VDD1 = VDD2 ≥ VDDL.
		Since VDD1 is a power supply pin for the charge pump circuit, connect a bypass
		capacitor CVDD immediately next to the VDD1 pin.
Vddl	7	Power supply pin for I ² C I/O signal interface.
		Supply voltage that obtains VDD1 = VDD2 ≥ VDDL.
		Connect a bypass capacitor CVDDL immediately next to VDDL pin.
Vss1	26	Ground pin.
Vss2	5	
Vss3	22	

Input pin ①									
Pin Name	PIN No. (QFN5-32)	Function							
EN1	17	Input pin for activating IC. It is pulled down internally. This IC is set to the standby mode as EN1=L is selected. Whenever starting this IC from the standby mode, change the state of EN1 from L to H. When EN1=L, too, also allows input to and output from I²C circuit. The standby current value depends on the setting of the EN2 pin to be described later or I²C register (SEN2). (See No.P22) Setting of EN2 (SEN)-L, in which the standby current value is reduce, is recommended for the standby mode.							
		EN1 (with pull-down)	Function						
		L	Standby state						
		Н	Circuit operating state						
EN2	8								
		Input pin that selects activation/stop state for the automatic luminance control circuit. It is pulled down internally. The automatic luminance control circuit operates based on the setting of this EN2 pin or that of I ² C register (SEN2), which will be explained later. If you do not select the operating state of the automatic luminance control circuit with the EN2 pin, fix EN2 pin to LOW, and select the operating state with I ² C register (SEN2).							
		EN2 (with pull-down) Function							
		L Automatic luminance control circuit stop state							
		H Automatic luminance control circuit activated state							
EN3	4	Forced full lighting select pin. It is pulled down internally. Fix EN3 pin to LOW when activating automatic luminance control. If EN3 pin is fixed to HIGH, LED will light at maximum luminance regardless of the setting of EN2.							
		EN3 (with pull-down)	Function						
		Ĺ	Automatic luminance control mode						
		Н	Forced full lighting mode						
		Joseph Law Highland							

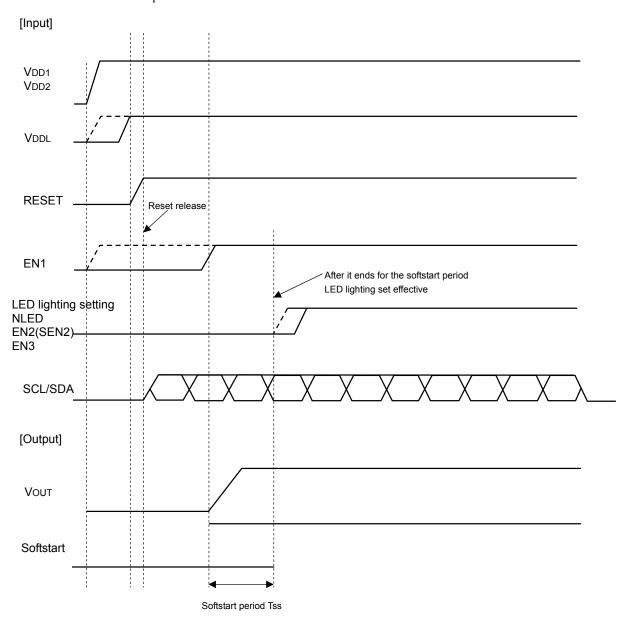
(3) Input pin ②

Pin Name	PIN No. (QFN5-32)	Function							
SCL	9	I ² C clock input pin.	² C clock input pin.						
SDA	10	I ² C data input pin.							
RESET	11	I ² C register hard reset pin.							
		Cancel the reset after VDDL	has risen.						
		RESET	Function						
		L	Resets I ² C register						
		H Exits reset							
SAMPL	12	Brightness evaluation sampling cycle select pin. This pin is pulled up to VDD1=VDD2 level in the IC.							
		SAMPLE (with pull-up)	Sampling cycle (TSAMPL)						
		Н	655msec						
		L 1310msec							

(4) Pin for charge pump circuit

Pin Name	PIN No. (QFN5-32)	Function
C1N	27	Pump-up capacitor C1 connect pin.
C1P	28	Pump-up capacitor C1 connect pin.
C2N	31	Pump-up capacitor C2 connect pin.
C2P	30	Pump-up capacitor C2 connect pin.
Vout	29	LED drive voltage output pin (LED common anode)

(5) Automatic luminance control and LED


Pin Name	PIN No. (QFN5-32)	Function
PDOUT	15	Sense resistor connect pin.
PD	14	Sensor connect pin.
CLED	16	Pin that connects to capacitor for delaying LED current change
		It is possible to add delay to the LED current change waveform by connecting an
		external capacitor CLED with this pin.
		(Connection of CLED=1μF is recommended)
LED1	20	LED 1 cathode connect pin.
LED2	21	LED 2 cathode connect pin.
LED3	23	LED 3 cathode connect pin.
LED4	24	LED 4 cathode connect pin. * Connect this pin to ground when using three LED lamps only.
AOUT	19	Connect pin for LED maximum current setting resistor

(6) Miscellaneous

Pin Name	PIN No. (QFN5-32)	Function
VREF	18	Internal reference voltage pin.
		Connect capacitor CVREF immediately next to VREF pin.
(test)	1	Test pin.
(test)	2	* Set it to "OPEN."
(test)	3	
(test)	6	
(test)	25	

7.1 Activation sequence

S1F76680 activation sequence is shown below.

- ① VDD1 and VDD2 start. (The battery voltage is supplied.)
- ② VDDL starts. (It is possible to start this at the same time as ①.)
- ③ RESET = Low → High, and the resetting is cancelled. Resetting of the I²C register is cancelled, and SCL and SDA are become effective.
- Start EN1. S1F76680 starts operating from the standby status.
 The software start begins. (It is possible to start ① and ② at the same time.)
- ⑤ After the software start period ends, the setting to turn on the LED will become effective.

7.2 Setting and operating state

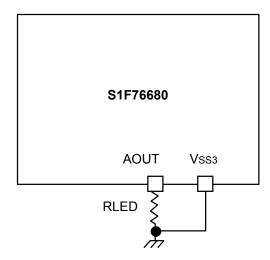
EN1	EN2 *1	EN3	NLED (I ² C register)	Operating state (After completion of soft start)	
L	X *2	Х	X	Standby	
Н	L	L	L	LED lights off	
Н	X	Н	X	LED lights up ① (At maximum current)	
Н	Н	L	L LED lights up ② (Under automatic luminance of		
Н	Х	L	Н	LED lights up ③ (At fixed current set in the register)	

- *1 EN2=H when either EN2 pin or I²C register SEN2 (see No.P14) is set to HIGH.
- *2 The standby current value depends on the setting of EN2 pin I²C register (SEN2). (See No.P21)

7.3 LED current setting

7.3.1 Setting of maximum current value

The LED's maximum current value is determined by the resistance value of resistor RLED connected with AOUT pin.


The current value that can be set with I^2C register described later cannot exceed this maximum current value. (The current value can be set in the unit of one 127th of ILEDmax)

Connect resistor RLED as shown below, and be sure connect it between AOUT pin and Vss3.

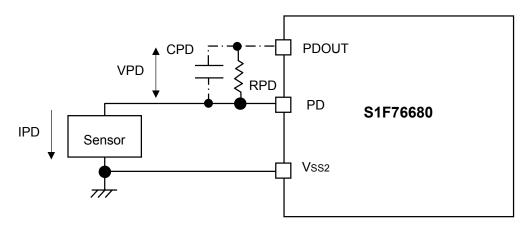
Determine RLED from the following formula:

RLED=200 / ILEDmax

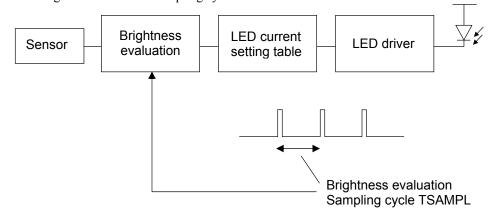
Maximum current set value = ILEDmax (mA), resistance value = RLED (k Ω) For example, when ILEDmax=20mA is to be set, RLED=10k Ω .

7.3.2 Setting of automatic luminance control

[1] Connection of a sensor


For enabling automatic luminance control, a luminance sensor and resistor have to be connected externally. Connect the sensor between Vss2 and PD pin, and sense resistor RPD between PDOUT and PD pin as shown below

When current flowing to the sensor is assumed IPD, VPD=IPD×RPD is established. S1F76680 uses this VPD to evaluate brightness on the scale of 1 to 16.


The voltage at PDOUT and PD pins is 0V in the standby state.

Measures, such as shorter wiring between the sensor and sense resistor and S1F76680, stable Vss2 level supply, etc, are required to avoid noise influence as much as possible.

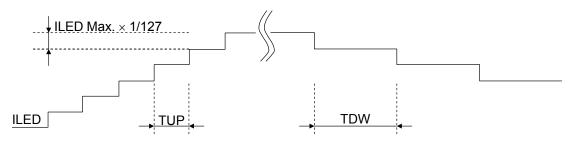
It is recommended that CPD, a capacitor in the range from 0.1 to $1\mu F$, be connected between VPD and PDOUT pin as shown below as a measure.

[2] Selection of brightness evaluation sampling cycle

The S1F76680 sensor evaluates brightness in the brightness evaluation sampling cycle (TSAMPL). The following values can be selected for the sampling cycle by setting SAMPL pin. When using default sampling cycle (655msec), set SAMPL pin to "OPEN."

SAMPL pin setting	Sampling cycle (TSAMPL)
H (pulled up)	655msec
L	1310msec

* This pin is pulled up to VDD1=VDD2 level in the IC.

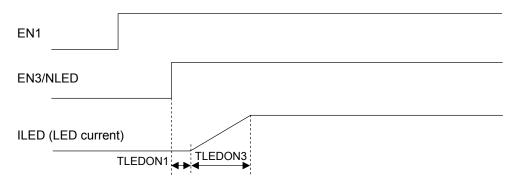

[3] Selection of the change time of the automatic luminance control current

S1F76680 judges brightness at every sampling cycle and then automatically changes LED current so that it may correspond to the brightness.

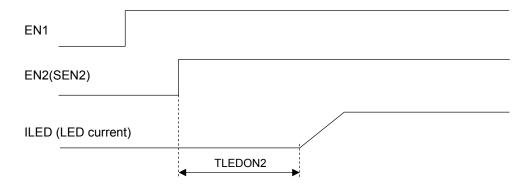
When the automatic luminescence control is turned on, LED current value changes in a unit of 1/127 of ILEDmax.

You can set the current change time from the 1AH at an address (to be described later) of I²C-Bus. Independent setup is available for the increased current (TUP) and decreased current (TDW).

• Waveform of LED current changes in the automatic luminescence control

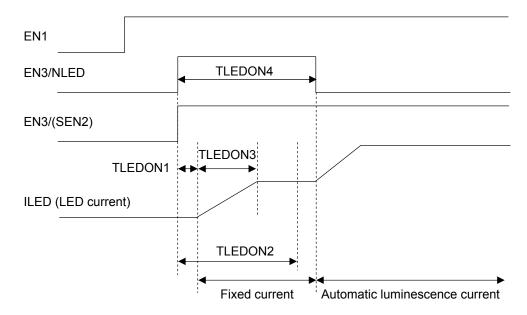

• Current change time selection register used in the automatic luminescence control

		Register								
Address Item TDW setting register				Т	TUP setting register					
		D7	D6	D5	D4	D3	D2	D1	D0	
1AH	Register name	TDW3	TDW2	TDW1	TDW0	TUP3	TUP2	TUP1	TUP0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
	Initial value	0	1	1	1	0	1	0	1	


• Current change time setting table

State of	Chang	ge time 4-bi	it register s	etting			
selection	TDW3 TUP3	TDW2 TUP2	TDW1 TUP1	TDW0 TUP0	Change time (Unit)		Remarks
0	0	0	0	0	0.32	msec	
1	0	0	0	1	0.64	msec	
2	0	0	1	0	1.28	msec	
3	0	0	1	1	2.56	msec	
4	0	1	0	0	5.12	msec	
5	0	1	0	1	10.24	msec	TUP initial value
6	0	1	1	0	20.48	msec	
7	0	1	1	1	40.96	msec	TDW initial value
8	1	0	0	0	81.92	msec	
9	1	0	0	1	163.84	msec	
10	1	0	1	0	327.68	msec	
11	1	0	1	1	655.36	msec	
12	1	1	0	0	1.31	sec	
13	1	1	0	1	2.62	sec	
14	1	1	1	0	5.24	sec	
15	1	1	1	1	10.48	sec	

- [4] LED lighting sequence
 - Delay between the startup and LED lighting varies as shown below depending on the operating state.
 - In the case of LED lighting ① (Max. current) and LED lighting ③ (fixed current set from the register)



• In the case of LED lighting ② (Automatic luminescence control)
When lighting LED automatically after startup, a delay of TLEDON2 occurs until LED is lighted.

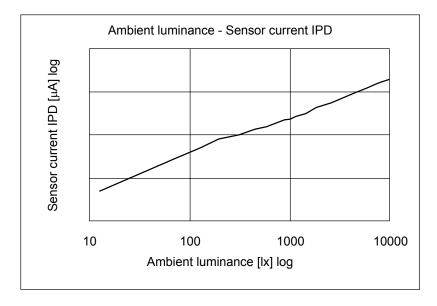
* You can cut the lighting delay time short during the automatic luminescence control mode by combining two operations as shown above and then lighting LED with the fixed current.

Switching from the fixed current to the automatic luminescence control must be done after making sure that the time of TLEDON4>TLEDON1+TELDON3 and TLEDON4>TLEDON2 have elapsed.

	When SAMPL=H (Pull up)	SAMPL=L	Remarks
TLEDON1(msec)	Max. 5ms	sec+TUP	TUP is selected from the current
TLEDON2(msec)	Max. 1180msec+TUP	Max. 2360msec+TUP	change time setting table (No.P11)
TLEDON3(msec)	Max. 21	00msec	CLED=1.0μF ILED 0%→90%,NLED=127

• After LED has been lit, change of TUP becomes available from 1AH register at an address (to be described later) of I²C-Bus.

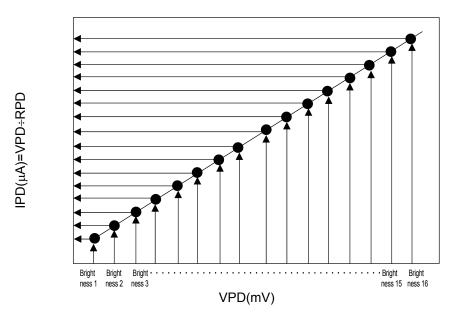
[5] Delay in LED current change


S1F76680 allows providing delay to the LED current change waveform and thus realizing a smoother current change by connecting the capacitor CLED to CLED pin. Connection of CLED=1 μ F is recommended.

• LED current change waveform

[6] Constant setting

Ambient luminance evaluated by a luminance sensor and sensor current IPD typically shows the following inclination.



S1F76680 evaluates ambient brightness using value of sensor's VPD on the scale of 1 to 16. The following table shows relation between VPD and brightness.

VPD(V)	Brightness				
VPD1=0.003	Brightness 1	Dark			
VPD1=0.003 	Brightness 2	(low sensor current)			
VPD2=0.004 —— VPD3=0.006 ——	Brightness 3	()			
VPD3=0.006 —— VPD4=0.010 ——	Brightness 4	↑			
VPD5=0.016 ——	Brightness 5				
VPD5=0.016 —— VPD6=0.026 ——	Brightness 6				
VPD6=0.026 —— VPD7=0.040 ——	Brightness 7				
VPD8=0.063	Brightness 8				
VPD9=0.079 —	Brightness 9				
VPD10=0.126 —	Brightness 10				
VPD10=0.120 —— VPD11=0.173 ——	Brightness 11				
VPD12=0.299	Brightness 12				
VPD13=0.472	Brightness 13	1			
VPD14=0.787	Brightness 14	▼			
VPD15=1.197	Brightness 15	Bright			
VI B13-1.197 —	Brightness 16	(high sensor current)			

VPDn: Threshold of brigtness n and brightness n+1

The appropriate RPD is determined by the characteristic of the luminance sensor being used and this IC's VPD for brightness evaluation.

The following table shows IPDs for brightness evaluation with sense resistor RPD= $100k\Omega$.

VPD(V)	Ві	rightness	RPD(kΩ)	Brightness is judged. IPD(μA) IPDn=VPDn/RPD
- VPD1=0.003 - VPD2=0.004 - VPD3=0.006 - VPD4=0.010 - VPD5=0.016 - VPD6=0.026 - VPD7=0.040 - VPD8=0.063 - VPD9=0.079 - VPD10=0.126 - VPD11=0.173 - VPD12=0.299 - VPD13=0.472 - VPD14=0.787 - VPD15=1.197	Brightness 1 Brightness 2 Brightness 3 Brightness 4 Brightness 5 Brightness 6 Brightness 7 Brightness 8 Brightness 9 Brightness 10 Brightness 11 Brightness 12 Brightness 13 Brightness 14 Brightness 15 Brightness 15	Dark (low sensor current) Bright (high sensor current)	100	IPD1=0.03

Next, determine the LED current values at respective brightness levels.

Set the current values to the following addresses with I²C-Bus, which will be explained later.

It is possible to set 128 gradations (SLED), from 0 to 127, for the LED current value and SLED (0 to 127) is set by setting 7-bit value, from D0 (LSB) to D6 (MSB), to each address.

D7 is a dummy.

When automatic luminance control is activated, LED drive current changes gradually between current values set to respective address.

This gradual change of the current value realizes the comfortable display during automatic luminance control. The current value can be obtained from the following formula:

ILED(mA)=ILEDmax \times SLED / 127

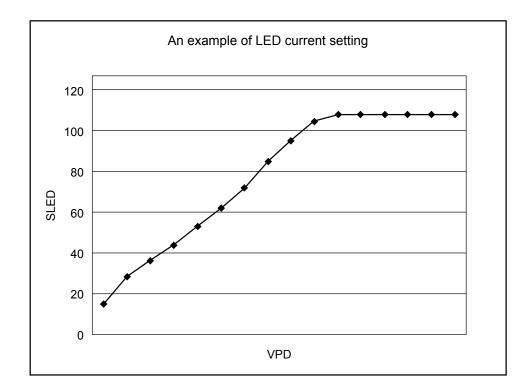
* Note, however, that SLED (0 to 3) are not lighted but they are turned off.

Note that setting SLED (0 to 3) lights off LED.

When ILEDmax=20mA

If (D7,D6,D5,D4,D3,D2,D1,D0)=(X,1,1,1,1,1,1,1) is input, SLED=127, therefore, ILED=20mA \times 127/127 = 20mA, which means LED is driven at maximum current.

If (D7,D6,D5,D4,D3,D2,D1,D0)=(X,0,0,0,0,0,0,0,0) is input, SLED=0, therefore, ILED=20mA \times 0/127=0mA, which means LED goes off.


* When variations in luminescence result from the minute LED lighting current setting (SLED being set to small), you can specify to increase the LED current value.

If LED setting address is not newly set, SLED will be operated at register default value.

Brightness		LED current setting address	Register default value
Brightness 1	Dark	02H	13
Brightness 2	(low sensor current)	03H	18
Brightness 3		04H	38
Brightness 4	1 ★	05H	42
Brightness 5		06H	52
Brightness 6		07H	62
Brightness 7		08H	68
Brightness 8		09H	85
Brightness 9		0AH	100
Brightness 10		0BH	108
Brightness 11		0CH	127
Brightness 12		0DH	127
Brightness 13	l L	0EH	127
Brightness 14	T	0FH	125
Brightness 15	Bright	10H	119
Brightness 16	(high sensor current)	11H	105

The following table shows an example of customized LED current setting for automatic luminance control.

Brigh	Brightness		Setup example:
Brightness 1	Dark	02H	15
Brightness 2	(low sensor current)	03H	28
Brightness 3	(ion conser carrent)	04H	36
Brightness 4	1 📍	05H	44
Brightness 5	1	06H	53
Brightness 6	1	07H	62
Brightness 7	1	08H	72
Brightness 8]	09H	85
Brightness 9		0AH	95
Brightness 10	1	0BH	105
Brightness 11	1	0CH	108
Brightness 12	1	0DH	108
Brightness 13		0EH	108
Brightness 14	1	0FH	108
Brightness 15	Bright	10H	108
Brightness 16	(high sensor current)	11H	108

[7] Acquisition of brightness information

S1F76680 can read brightness information (brightness 1 to 16) as data.

Read data from address 00H with I²C, which will be explained later.

Brightness information will be output as 4-bit information of D7, D6, D5, D4 (register name: X3, X2, X1, X0) as follows:

Brightness 1 = (D7,D6,D5,D4,D3,D2,D1,D0) = (0,0,0,0,X,X,X,X)Brightness 2 = (D7,D6,D5,D4,D3,D2,D1,D0) = (0,0,0,1,X,X,X,X)

•

Brightness 16 (D7,D6,D5,D4,D3,D2,D1,D0) = (1,1,1,1,X,X,X,X)

Setting of register-based fixed current

S1F76680 allows lighting LED forcibly at a fixed current value without resorting to brightness of the environment.

Just like the current setting in the automatic luminescence control, set this fixed current based on the following

formula and using 7 bits from D0 (LSB) to D6 (MSB) at address 01H. D7 is the dummy.

ILED(mA)=ILEDmax \times SLED / 127

Note that setting of SLED (0 to 3) lights off LED.

To drive LED at this imperative fixed current value, set D2 register (register name: NLED) of address 00H to NLED = "1."

7.4 I²C slave function

S1F76680 incorporates a I²C-Bus controller with slave function, to enhance operability of the white LED driver, whose LED's current value can change according to the ambient brightness.

By sending specific commands to the I²C controller, you can read / write data in a register, and thus, perform advanced setting of the white LED driver.

I²C basic specifications

The basic operation is complied with "I²C-BUS SPECIFICATION VERSION2.1" of Philips.

[Address] 7-bit length

Slave address 1010100X

[Pins being used] SCL Clock input pin

SDA Data I/O pin

[Voltage level] VDDL level

Register map is shown below:

Register Map

Address	Item		,		Reg		,			Remarks
Addiess		D7	D6	D5	D4	D3	D2	D1	D0	
	Name	X3	X2	X1	X0	_	NLED	SEN2	SRESET	"1" for "ON", "0" for OFF
	R/W	R	R	R	R	_	R/W	R/W	R/W	(same for the following
00Н	Defaultvalue	_	_	_	_	I	0	0	0	functions) SEN2: Automatic luminance control operation signal NLED: Imperative fixed current mode SRESET: Reset signal X3 to X0: Brightness information
	Name	_	ILED6	ILED5	ILED4	ILED3	ILED2	ILED1	ILED0	Imperative fixed
01H	R/W		R/W	current setting						
	Defaultvalue		0	0	0	0	0	0	0	current setting
	Name		Y06	Y05	Y04	Y03	Y02	Y01	Y00	LED current setting
02H	R/W		R/W	for brightness 1						
	Defaultvalue	_	0	0	0	1	1	0	1	loi brigitiress i
	Name		Y16	Y15	Y14	Y13	Y12	Y11	Y10	LED current setting
03H	R/W	_	R/W	for brightness 2						
	Defaultvalue		0	0	1	0	0	1	0	lor brightness 2
	Name		Y26	Y25	Y24	Y23	Y22	Y21	Y20	LED
04H	R/W	_	R/W	LED current setting						
	Defaultvalue	_	0	1	0	0	1	1	0	for brightness 3
	Name	_	Y36	Y35	Y34	Y33	Y32	Y31	Y30	
05H	R/W	_	R/W	LED current setting						
	Defaultvalue	_	0	1	0	1	0	1	0	for brightness 4
	Name	_	Y46	Y45	Y44	Y43	Y42	Y41	Y40	
06H	R/W		R/W	LED current setting						
00	Defaultvalue		0	1	1	0	1	0	0	for brightness 5
	Name		Y56	Y55	Y54	Y53	Y52	Y51	Y50	
07H	R/W		R/W	LED current setting						
0711	Defaultvalue		0	1	1	1	1	1	0	for brightness 6
	Name		Y66	Y65	Y64	Y63	Y62	Y61	Y60	
08H	R/W		R/W	LED current setting						
0011	Defaultvalue		1	0	0	0	1	0	0	for brightness 7
	Name		Y76	Y75	Y74	Y73	Y72	Y71	Y70	
09H	R/W		R/W	LED current setting						
00	Defaultvalue		1	0	1	0	1	0	1	for brightness 8
	Name		Y86	Y85	Y84	Y83	Y82	Y81	Y80	
0AH	R/W	_	R/W	LED current setting						
0,	Defaultvalue	_	1	1	0	0	1	0	0	for brightness 9
	Name		Y96	Y95	Y94	Y93	Y92	Y91	Y90	
0BH	R/W	_	R/W	LED current setting						
02	Defaultvalue	_	1	1	0	1	1	0	0	for brightness 10
	Name	_	YA6	YA5	YA4	YA3	YA2	YA1	YA0	
0CH	R/W	_	R/W	LED current setting						
	Defaultvalue		1	1	1	1	1	1	1	for brightness 11
	Name		YB6	YB5	YB4	YB3	YB2	YB1	YB0	
0DH	R/W	_	R/W	LED current setting						
-	Defaultvalue	_	1	1	1	1	1	1	1	for brightness 12
	Name		YC6	YC5	YC4	YC3	YC2	YC1	YC0	
0EH	R/W	_	R/W	LED current setting						
	Defaultvalue		1	1	1	1	1	1	1	for brightness 13
	Name		YD6	YD5	YD4	YD3	YD2	YD1	YD0	
0FH	R/W	_	R/W	LED current setting						
	Defaultvalue	_	1	1	1	1	1	0	1	for brightness 14
	Name	_	YE6	YE5	YE4	YE3	YE2	YE1	YE0	LED assessed a still a s
10H	R/W	_	R/W	LED current setting for brightness 15						
	Defaultvalue	_	1	1	1	0	1	1	1	TIOI DIIGIIIIICSS 13
	Name	_	YF6	YF5	YF4	YF3	YF2	YF1	YF0	LED ourront setting
11H	R/W	_	R/W	LED current setting						
	Defaultvalue	_	1	1	0	1	0	0	1	for brightness 16
	Name	TDW3	TDW2	TDW1	TDW0	TUP3	TUP2	TUP1	TUP0	Automatic luminance
1AH	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	control
ІАП	Defaultvalue									LED current change
	Detautvalue	0	1	1	1	0	1	0	1	time setting

^{*} Use of addresses 12H to 19H is prohibited.

Description of the registers

• Address 00H

Register name X3, X2, X1, X0 : 4-bit read-only brightness information. X3=MSB, X0=LSB.

Brightness information can only be read under the condition of EN2=1

or SEN2=1.

Also, it is possible to read brightness information regardless of whether the imperative fixed current drive register is set to NLED=0

or NLED=1.

Register name NLED : Register for imperative fixed current drive setting.

NLED=1 Enable driving at imperative fixed current value.

NLED=0 Default value.

Register name SEN2 : Register for automatic luminance control operation setting.

SEN2=1 Enable driving with automatic luminance control.

SEN2=0 Default value.

* Automatic luminance control is enabled if either this register SEN2 or EN2 pin is set to "1."

Register name SRESET : Register for I²C soft reset.

SRESET=1 Executes soft reset. SRESET=0 Default value.

* I²C will be reset when SRESET=1 or RESET pin=0.

To exit reset, write as SRESET=0.

SRESET=0 can be written immediately after reset.

Address 01H

Register name ILED6 to ILED0

Registers for imperative fixed current setting.

• Address 02H to 11H

Register name Y00 to YF6

Registers to set the current values for brightness 1 to 16 for auto luminance control.

Address 1AH

Register name TDW3 to TDW0, TUP3 to TUP0

They are the registers used for selecting LED current change time.

7.5 Other functions

Soft start function

S1F76680 is built in with the soft start function that prevents incoming current.

After power on of VDD1 and VDD2 voltage and that of EN1, soft start is carried out for 3msec.

Even if it causes no problem to power on EN2 and EN3 after soft start, nonetheless, LED starts to light up after soft start.

• Charge pump function

S1F76680 is equipped with a charge pump type DC/DC converter, which generates necessary voltage to light up LED from voltage supplied to VDD1 pin, and supplies it to VOUT pin.

This charge pump circuit operates while selecting the booster magnification from 1.5 and 1 times according to necessity, thus, provides a longer operating time to battery-operated devices.

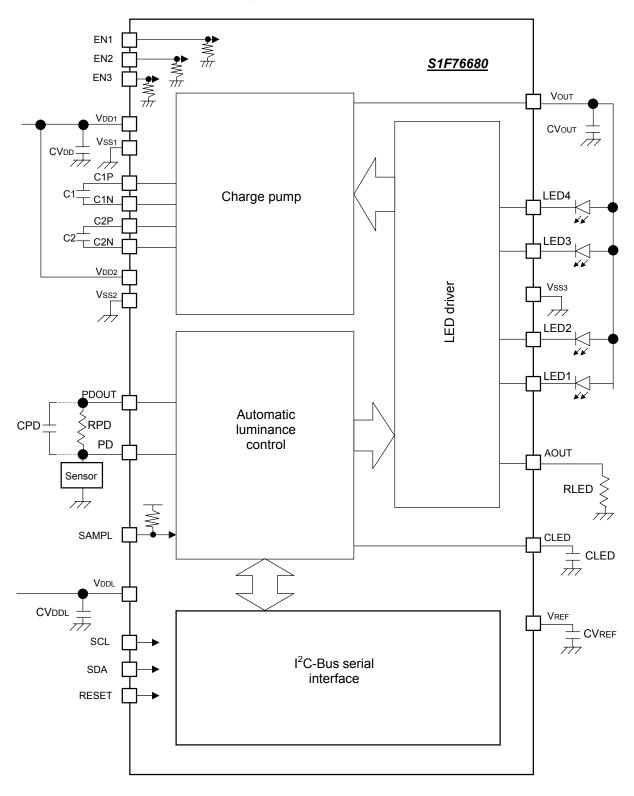
To operate this circuit, pump-up capacitor C1 and C2, and storage capacitor CVout are required.

8. ABSOLUTE MAXIMUM RATINGS

Vss1=Vss2=Vss3=0V

Item	Symbol Rated value		Unit	Applicable pin	Remarks	
item	Symbol	Min.	Max.	Unit	Applicable pili	Remarks
Input power voltage 1	VDD	-0.3	5.5	V	VDD1, VDD2	Note 1
Input pin voltage 1	VPIN1	-0.3	VDD +0.3	V	EN1, EN2, EN3, SAMPL	_
Input power voltage 2	VDDL	-0.3	3.3	V	VDDL	Note 1
Input pin voltage 2	VPIN2	-0.3	VDDL +0.3	V	SCL, SDA, RESET	_
Output current 1	IVout	_	120	mA	Vout	Note 2
Output current 2	ILED	_	30	mA	LED1, LED2, LED3, LED4	Note 3
Allowable dissipation	PD	_	600	mW	_	_
Operating ambient temperature	Ta	-25	85	°C	_	_
Storage temperature	Tstg	-40	125	°C	_	_

- <Note 1> $V_{DD1}=V_{DD2} \ge V_{DDL}$
- <Note 2> IVOUT=Total of output current values of all LED channels
- <Note 3> Output current value when ILED=LED1ch
- <Note 4> Do not externally feed voltage to the output pin, test pin and capacitor connection pin.
- <Note 5> The absolute maximum rating is not something that guarantees the equipment's electric characteristics. Operation beyond the above rating may lead to malfunction or unrecoverable damage. Moreover, the equipment may function normally temporarily but its reliability can be significantly deteriorated.


9. ELECTRICAL CHARACTERISTICS

If unspecified, VDD1=VDD2=3.6V, VDDL=1.8V, Ta=25°C and use external parts described in 10.2.

			Specification		l	Applicable		
Item	Symbol	Min.	Тур.	Max.	Unit	pin	Remarks	
Innut voltage	Vdd	3.0	3.6	4.6	V	VDD1, VDD2		
Input voltage	VDDL	1.6	1.8	3.0	V	Vddl		
Self-consumption current	lopr	_	1.0	1.5	mA	VDD1, VDD2	1 times under no load	
Standby current 1	Istby1		_	1.0	μΑ	VDD1, VDD2	EN1=EN3=L, EN2(SEN2)=L	
,	,		-	2.0	μΑ	VDD1, VDD2	EN1=EN3=L, EN2(SEN2)=H	
Standby current 2	Istby2			5.0	μА	VDDL	EN1=EN2(SEN2)=EN3=L	
Output voltage	Vout	4.12	4.44	_	V	Vouт	1.5 boosting when IVOUT=80mA	
		4.44	4.68	_	V	Vouт	1.5 boosting when IVOUT=60mA	
Charge pump Output impedance	RVOUT	_	12	16	Ω	Vout	1.5 boosting when IVOUT=80mA	
Operating frequency	fosc	160	200	240	kHz	C1N	When operated with 1.5 times booster magnification	
Soft start time	Tss	_	3.0	5.0	ms	_	See No.P8	
LED maximum current setting resistance	RLED	50	_	8.0	kΩ	RLED	See No.P9	
LED pin leak current	ILEAK	_	_	1.0	μΑ	LED1 to 4	VLED=4.6V	
LED current	ILED1	-4	_	+4	%	LED1 to 4	SLED>17, VLED=1V, 1 times ILED1=∆ILED1/ILEDMAX	
LED CUITCH	ILED2	-3.5	_	+3.5	%	LED1 to 4	SLED ≤ 16, VLED=1V, 1 times ILED2=∆ILED2/ILEDMAX	
LED pin saturation voltage	VLED	_	0.21	0.24	V	LED1 to 4	EN1=EN2=EN3=H ILED=20mA	
Sense resistor RPD	RPD	10	_	500	kΩ	PDOUT, PD	See No.P9 to 15	
Sensor application voltage	VSENS	0.8	1.0	1.2	V	PD	PD pin voltage	
	VPD15	0.956	1.196	1.436	V	PDOUT, PD	Brightness evaluation value	
VPD	VPD1	0.001	0.003	0.005	-			
	ΔVPD		Dn+1-VPDr		V	PDOUT, PD	Monotonic increase	
Sampling cycle	TSAMPL	524	655	786	ms		SAMPL=H (Pull up)	
		1048 Set	1310	1572 Set			SAMPL=L	
Current change time	TUP/TDW	value -20	_	value +20	%	LED1 to 4	See No.P12 setting table	
	TLEDON1		_	5+TUP			See No.P12	
		_	_	1180 +TUP			SAMPL=H (Pull up)	
LED lighting time	TLEDON2	_	_	2360 +TUP	ms	LED1 to 4	SAMPL=L	
	TLEDON3	_	_	2100			CLED=1.0μF, NLED=127 ILED 0%→90%	
H level input voltage 1	VIH1	1.5	_	_	V	ENIA ENIO		
L level input voltage 1	VIL1	_	_	0.3	V	EN1, EN2, EN3		
Input current 1	liH1	_	1.5	5.0	μΑ	LIVO	VIN=3.6V, pull-down current	
H level input voltage 2	VIH2	0.7 ×VDD			V		VDD=VDD1=VDD2	
L level input voltage 2	VIL2	_	_	0.3 ×VDD	V	SAMPL		
Input current 2	IIH2	_	7.2	14.0	μА		VIN=0V, pull up current	
H level input voltage 3	VIH3	0.7 ×Vddl	_	_	V			
L level input voltage 3	VIL3	_	_	0.3 ×VDDL	V	SCL, SDA RESET		
Input current 3 (H)	Іінз	-1.0	_	1.0	μΑ		Vin=1.8V	
Input current 3 (L)	IIL3	-1.0	_	1.0	μA		V _{IN} =0V	

10. EXTERNAL CONNECTION DIAGRAM

10.1 Standard Connection Examples

10.2 Recommended connection parts

Parts name	Application	Maximum applied voltage	Capacity value or Resistance value
CVDD	Bypass capacitor between VDD and Vss pin	VDD1, VDD2	0.47μF
C1	Pump-up capacitor for charge pump boosting 1	VDD1, VDD2	1μF
C2	Pump-up capacitor for charge pump boosting 2	VDD1, VDD2	1μF
RPD	Resistance for light sensor current-voltage conversion	VDD1, VDD2	See 7.3
CVDDL	Bypass capacitor between VDDL and Vss pin	VDDL	0.47μF
CVREF	Smoothing capacitor for internal reference voltage	VDD1, VDD2	0.1μF
RLED	LED current adjustment resistor	VDD1, VDD2	See 7.3
CVOUT	Output smoothing capacitor for charge pump	1.5 × VDD1, VDD2	1μF
Sensor	Luminance sensor	VDD1, VDD2	*
CPD	Noise removal	VDD1, VDD2	0.1 to 1μF
CLED	Current change delay	Vdd1, Vdd2	1μF

^{*} An example of recommended sensor TDK BCS2015G1

<Pre><Pre>cautions>

When using this Development Specifications, you should remember the following points:

- 1. Information in this Development Specifications is subject to change without notice.
- 2. There is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. The application examples in this Development Specification are provided to facilitate understanding of this product. It should be noted that SEIKO EPSON shall not be liable for any problem related to circuits that may arise from its use.
- 3. No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson.

When using this semiconductor, note on the following points:

- "Precautions for Handling the IC against the Light"
- If semiconductor chips are exposed to the strong light, their characteristics may change. Therefore, if the ICs are placed in the light, they may malfunction. To protect the ICs, the following general requirements must be satisfied for IC mount boards and products.
- (1) Design and mount the IC to prevent its exposure to light during actual operation.
- (2) Also, do not expose the ICs to the light in the inspection phase.
- (3) Take all surfaces, top, bottom and sides, of the IC chip into consideration when blocking out light.

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

2580 Orchard Parkway San Jose , CA 95131,USA

Phone: +1-800-228-3964 FAX: +1-408-922-0238

SALES OFFICES

Northeast

301 Edgewater Place, Suite 210 Wakefield, MA 01880, U.S.A.

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA

Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA

Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 FAX: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON Electronic Technology Development (Shenzhen) LTD.

12/F, Dawning Mansion, Keji South 12th Road,

Hi- Tech Park, Shenzhen

Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road,

Taipei 110

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place,

#03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA

GUMI OFFICE

2F, Grand B/D, 457-4 Songjeong-dong,

Gumi-City, KOREA

Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.

IC International Sales Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117