10W, Wide Input Range DIP, Single & Dual Output DC/DC Converters

- 1500VDC Isolation
- 4:1 Wide Input Range
- Temperature Performance -40°C to +60°C
- Remote On/Off Control
- Complies With EN55022 Class A

Minmax's new launched MJWI10 series comprising 16 different models. Packing up to 10W of power into a 1x1x0.4 inch package, with efficiency as high as 87%. The MJWI10 has wide input ranges of 9–36VDC and 18–75VDC and is available in output voltages of 3.3V, 5V, 5.1V, 12V, 15V, ±5V, ±12V and ±15VDC.

Other features include soft start, continuous short circuit protection, remote on/off, six-sided shielded case, and EN55022 Class A conducted noise compliance minimizes design-in time, cost and eliminate the need for external filtering.

Standard footprint targets data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

Absolute Maximum Ratings

Parameter			Max.	Unit
Input Surge Voltage (1000 mS)	24VDC Input Models	-0.7	50	VDC
	48VDC Input Models	-0.7	100	VDC
Lead Temperature (1.5mm from case for 10 Sec.)			260	°C
Internal Power Dissipation			5,000	mW

Exceeding the absolute maximum ratings of the unit could cause damage. These are not continuous operating ratings.

Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit	
Operating Temperature	Ambient	-40	+60	°C	
Operating Temperature	Case	-40	+100	°C	
Storage Temperature		-40	125	°C	
Humidity			95	%	
Cooling	Free-Air Convection				
RFI	Six-Sided Shielded, Metal Case				
Conducted EMI	EN5	5022 CI	ass A		

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current		Input C	urrent	Efficiency	
			Max.	Min.	@Max. Load	@No Load	@Max. Load	
	VDC	VDC	mA	mA	mA (Typ.)	mA (Typ.)	% (Typ.)	
MJWI10-24S033		3.3	2200	330	393		86	
MJWI10-24S05		5	2000	300	521		84	
MJWI10-24S051		5.1	2000	300	521	30	20	84
MJWI10-24S12	24	12	830	125	494			86
MJWI10-24S15	(9~36)	15	660	100	491		87	
MJWI10-24D05		±5	±1000	±150	514		84	
MJWI10-24D12		±12	±410	±62	488		86	
MJWI10-24D15		±15	±330	±50	491		87	
MJWI10-48S033		3.3	2200	330	196		85	
MJWI10-48S05		5	2000	300	260		84	
MJWI10-48S051		5.1	2000	300	260		84	
MJWI10-48S12	48	12	830	125	247	20	86	
MJWI10-48S15	(18 ~ 75)	15	660	100	246	20	87	
MJWI10-48D05		±5	±1000	±150	257		84	
MJWI10-48D12		±12	±410	±62	244		86	
MJWI10-48D15		±15	±330	±50	246		87	

Capacitive Load

Models by Vout	3.3V	5V	5.1V	12V	15V	±5V #	±12V#	±15V#	Unit
Maximum Capacitive Load	560	560	560	150	150	220	100	100	uF

[#] For each output

Input Fuse Selection Guide

24V Input Models	48V Input Models
2000mA Slow - Blow Type	1000mA Slow - Blow Type

Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit
Start Voltage	24V Input Models			9	
	48V Input Models			18	VDC
Under Voltage Shutdown	24V Input Models			8.5	VDC
	48V Input Models			17	
Reverse Polarity Input Current				1.5	А
Short Circuit Input Power	All Models			3000	mW
Input Filter			Pi F	ilter	

MJWI10 Series

Output Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy			±1.0	±2.0	%
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.3	±1.0	%
Load Regulation	Io=15% to 100%		±0.5	±1.2	%
Ripple & Noise (20MHz)			60	100	mV P-P
Ripple & Noise (20MHz)	Over Line, Load & Temp.			150	mV P-P
Over Power Protection		110			%
Transient Recovery Time	25% Load Step Change		300	600	uS
Transient Response Deviation	25% Load Step Change		±3	±6	%
Temperature Coefficient			±0.01	±0.02	%/°C
Output Short Circuit	Continuous				

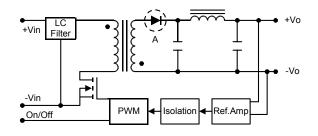
Remote On/Off Control

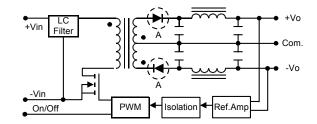
Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC/DC On	2.5 ~ 50 VDC or Open Circuit					
DC/DC off	0~1.0 VDC or Short Circuit (Pin 2 and Pin 6)					
Control Input Current (on)	Vctrl = 5V			500	uA	
Control Input Current (off)	Vctrl = 0V			-500	uA	
Control Common	Referenced to Negative Input					
Standby Input Current				10	mA	

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Isolation Voltage Rated	60 Seconds	1500			VDC
Isolation Voltage Test	Flash Tested for 1 Second	1650			VDC
Isolation Resistance	500VDC	1000			MΩ
Isolation Capacitance	100KHz,1V		1000	1200	pF
Switching Frequency			400		KHz
MTBF	MIL-HDBK-217F @ 25°C, Ground Benign	350			K Hours

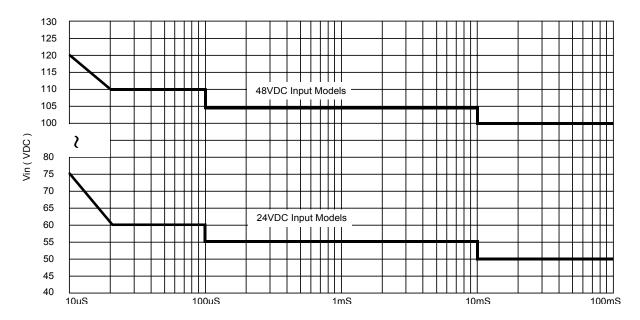
Notes:

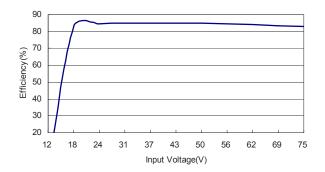

- 1. Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3. Ripple & Noise measurement bandwidth is 0-20 MHz.
- 4. These power converters require a minimum output loading to maintain specified regulation.
- 5. Operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 6. All DC/DC converters should be externally fused at the front end for protection.
- 7. Other input and output voltage may be available, please contact factory.
- 8. Specifications subject to change without notice.
- 9. To order the converter with heatsink, please add a suffix -HS (e.g. MJWI10-24S05/HS).

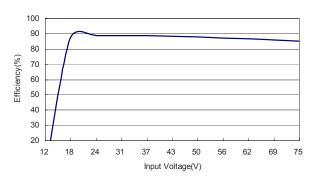


Block Diagram

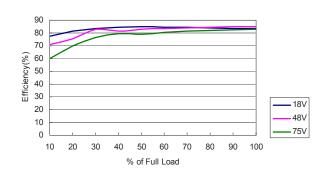
Single Output

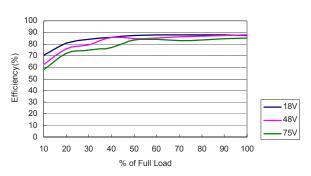

Dual Output



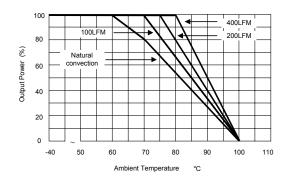

A: 3.3V –output models use the synchronous–rectifier configuration shown above. 5V, 5.1V, 12V, 15V, ±5V, ±12V and ±15V–output models employ a standard, diode–rectification architecture.

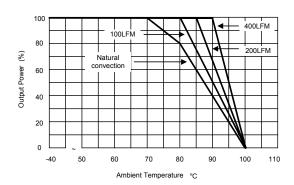
Input Voltage Transient Rating


MJWI10 Series



Efficiency vs Input Voltage (MJWI10-48S05)

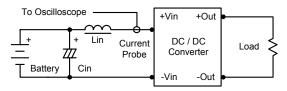




Efficiency vs Output Load (MJWI10-48S05)

Efficiency vs Output Load (MJWI10-48D15)

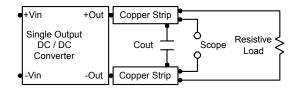
Derating Curve without Heatsink

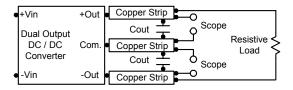

Derating Curve with Heatsink

Test Configurations

Input Reflected-Ripple Current Test Setup

Input reflected–ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0 Ω at 100 KHz) to simulate source impedance.


Capacitor Cin, offsets possible battery impedance .
Current ripple is measured at the input terminals of the module, measurement bandwidth is 0–500 KHz.



Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor.

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0–20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Design & Feature Considerations

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low.

To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.

The switch can be an open collector or equivalent.

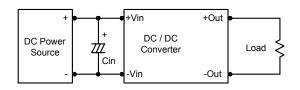
A logic low is 0V to 1V.

A logic high is 2.5V to 50V.

The maximum sink current at on/off terminal during a logic low is -500uA.

The maximum allowable leakage current of the switch at on/off terminal (2.5 to 50V) is 500uA.

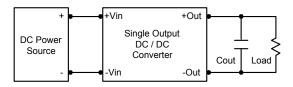
Overcurrent Protection

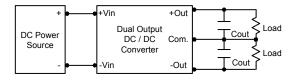

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current–limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 6.8uF for the 24V and 48V devices



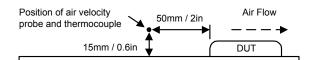
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance.

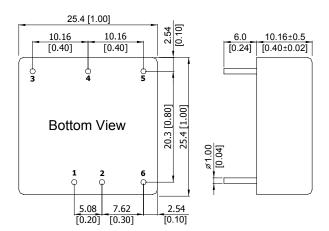
To reduce output ripple, it is recommended to use 4.7uF capacitors at the output.

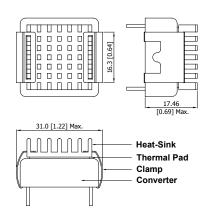
Maximum Capacitive Load

The MJWI10 series has limitation of maximum connected capacitance at the output.


The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time

The maximum capacitance can be found in the data sheet.


Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C.

The derating curves are determined from measurements obtained in an experimental apparatus.

Mechanical Dimensions

Tolerance	Millimeters	Inches
	X.X±0.25	X.XX±0.01
	X.XX±0.13	X.XXX±0.005
Pin	±0.05	±0.002

Pin Connections

Pin	Single Output	Dual Output
1	+Vin	+Vin
2	-Vin	-Vin
3	+Vout	+Vout
4	No Pin	Common
5	-Vout	-Vout
6	Remote On/Off	Remote On/Off

Physical Characteristics

Case Size : 25.4×25.4×10.16mm 1.0×1.0×0.4 inches

Case Material : Metal With Non-Conductive Baseplate

Weight : 15g

Heatsink Material : Aluminum

Finish : Anodic treatment (black)

Weight : 2.9g

*The advantages of adding a heatsink are:

- To help heat dissipation and increase the stability and reliability of DC/DC converters at high operating temperature atmosphere.
- 2.To upgrade the operating temperature of DC/DC converters, please refer to Derating Curve.