

Structure:	Silicon Monolithic IC
Product Name	Stereo Class-D Speaker Amplifier for Notebook PC
Part Number	BD5471MUV
Measurement circuit	Fig.1
Package Outlines	Fig.2 VQFN024V4040 (Plastic Mold)
Block Diagram	Fig.3
Pin Assignment	Fig.4
Function / Features	
	 High output power 2.5W /4 Ω / BTL (VDD=5V, THD+N=10%) 1.5W /8 Ω / BTL (VDD=5V, THD+N=10%) Gain selectable by the external control(6,12,18,24dB) Pop noise suppression circuitry Standby function (Mute function) Protection circuitry (Short protection, Thermal shutdown, Under voltage lockout) Built-in 3.3V regulator Built-in BEEP detect circuitry High power small package VQFN024V4040

Absolute Maximum Ratings (Ta=+25°C)

Item	Symbol	Rating	Unit
Power Supply Voltage	VDD	7.0	V
Bower Dissinction	Dd	0.7 *1	W
Power Dissipation	Pa	2.2 *2	W
Storage Temperature Range	Tstg	-55 ~ +150	°C
Input Terminal Input Voltage Range *3	Vin	-0.3~VDD+0.3	V
Control Terminal Input Voltage Range *4	Vctl	-0.3~VDD+0.3	V

*1 74.2mm \times 74.2mm \times 1.6mm, FR4 1-layer glass epoxy board(Copper on top layer 0%) Derating in done at 5.6mW/ $^{\circ}C$ for operating above Ta=25 $^{\circ}C$. There are thermal via on the board *2 74.2mm \times 74.2mm \times 1.6mm, FR4 4-layer glass epoxy board(Copper on bottom 2 and 3 layer 100%)

Derating in done at 17.6mW/ $^{\circ}$ C for operating above Ta=25 $^{\circ}$ C. There are thermal via on the board *3 Input Terminal (INL+, INL-, INR+, INR-) *4 Control Terminal (MUTE, G0, G1, EAPD, BEEP, REG_SD)

Operating Conditions

Item	Symbol	Range	Unit
Power Supply Voltage	VDD	+4.5 ~ +5.5	V
Temperature	Topr	-40 ~ +85	S°

%This product is not designed for protection against radioactive rays.

Electric Characteristics

(Unless otherwise specified, Ta=+25°C, VDD=+5.0V, AC item=LC Filter ; L=22µH, C=1µF)

Item		Symbol			Unit	Conditions	
			MIIN.	TTP.	MAX.		A stiller mede
Circuit current (Active)		I _{CC}	—	5.5	12.0	mA	MUTE=H, EAPD=H, No load
Circuit current (Sta	ndby)	I _{CCS}	_	0.1	1.0	mA	Standby mode, MUTE=H,EAPD=L
Circuit current (Reg	ulator)	$I_{\rm CCR}$		0.15	1.0	mA	Regulator Mode, MUTE=EAPD=L REG_SD=H
Circuit current (Shu	tdown)	I _{CCSD}	_	0.1	2.0	uA	Shutdown mode, MUTE=L, REG_SD=L
<speaker amplifier=""></speaker>							
Output powe	r 1	P ₀₁	0.8	1.2	_	W	BTL, f=1kHz, THD+N=1% *1, *2
Output powe	r 2	P ₀₂	1.0	1.5	_	w	BTL, f=1kHz, THD+N=10% *1, *2
			5.5	6.0	6.5	dB	BTL, G0=G1=GND
		_	11.5	12	12.5	dB	BTL, G0=GND, G1=VDD
Voltage gan	1	G _v	17.5	18	18.5	dB	BTL, G0=VDD, G1=GND
			23.5	24	24.5	dB	BTL, G0=G1=VDD
Total harmonic dis	stortion	THD+N	_	0.2	1.0	%	BTL, Po=0.7*P ₀₁ *1, *2
Crosstalk		Ст	60	70	_	dB	BTL, f=1kHz *1, *3
S/N		SNR	70	90	_	dB	BTL, Po=P ₀₁ *1, *3
Switching Frequency		Fosc	175	250	325	kHz	
Start-up tim	ie	Ton	0.78	1.02	1.46	msec	
			63	90	117	kΩ	G0=G1=GND
			42	60	78	kΩ	G0=GND, G1=VDD
Input resistar	ice	R _{IN}	25	36	47	kΩ	G0=VDD, G1=GND
			14	20	26	kΩ	G0=G1=VDD
<regulator></regulator>				•	•	•	·
Output volta	ge	Vo	3.15	3.30	3.45	V	Io=150mA
Maximum output current		Iom	150	200	_	mA	Vo=3.15V
Load regulation		L _{REG}	_	0.4	1	mV/mA	Io=0→150mA
<control (mu)<="" td="" terminal=""><td>TE, G0, G1, EA</td><td>PD, BEEP, F</td><td>EG_SD) ></td><td></td><td></td><td></td><td></td></control>	TE, G0, G1, EA	PD, BEEP, F	EG_SD) >				
Control terminal	High-level	V _{CTLH}	1.4	_	VDD	V	
input voltage	Low-level	V _{CTLL}	0	_	0.4	V	
Control terminal inpu	ut current	I _{CTL}	22	33	44	uA	Control terminal Input voltage V_{CTL} =5V

BTL: The voltage between 3pin and 6pin, 13pin and 16pin, $*1: R_1 = 8 \Omega$, $*2: B.W. = 400 \sim 30 \text{ kHz}$, *3: DIN AUDIO

■Control terminal

Pin name	Pin level	Conditions
MUTE	H/L	SPAMP active/shutdown
EAPD	H/L	SPAMP active/standby
BEEP	H/L	SPAMP active/standby
REG_SD	H/L	REG active/shutdown

■ Measurement circuit (Fig. 1)

REV. A

11

12

8 9 10

Cautions on use

(1) Absolute maximum ratings

This IC may be damaged if the absolute maximum ratings for the applied voltage, temperature range, or other parameters are exceeded. Therefore, avoid using a voltage or temperature that exceeds the absolute maximum ratings. If it is possible that absolute maximum ratings will be exceeded, use fuses or other physical safety measures and determine ways to avoid exceeding the IC's absolute maximum ratings.

(2) GND terminal's potential

Try to set the minimum voltage for GND terminal's potential, regardless of the operation mode.

(3) Shorting between pins and mounting errors

When mounting the IC chip on a board, be very careful to set the chip's orientation and position precisely. When the power is turned on, the IC may be damaged if it is not mounted correctly. The IC may also be damaged if a short occurs (due to a foreign object, etc.) between two pins, between a pin and

the power supply, or between a pin and the GND.

(4) Operation in strong magnetic fields

Note with caution that operation faults may occur when this IC operates in a strong magnetic field.

(5) Thermal design

Ensure sufficient margins to the thermal design by taking in to account the allowable power dissipation during actual use modes, because this IC is power amp. When excessive signal inputs which the heat dissipation is insufficient condition, it is possible that thermal shutdown circuit is active.

(6) Thermal shutdown circuit

This product is provided with a built-in thermal shutdown circuit. When the thermal shutdown circuit operates, the output transistors are placed under open status. The thermal shutdown circuit is primarily intended to shutdown the IC avoiding thermal runaway under abnormal conditions with a chip temperature exceeding Tjmax = $+150^{\circ}$ C, and is not intended to protect and secure an electrical appliance.

(7) Load of the output terminal

This IC corresponds to dynamic speaker load, and doesn't correspond to the load except for dynamic speakers.

(8) The short protection of the output terminal

This IC is built in the short protection for a protection of output transistors.

When the short protection is operated, output terminal becomes Hi–Z condition and is stopped with latch. Once output is stopped with latch, output does not recover automatically by canceling the short-circuiting condition. The condition of stopping with latch is cancelled, when power supply or standby signal is turned off and turned on again.

(9) Operating ranges

The rated operating power supply voltage range (VDD=+4.5V \sim +5.5V) and the rated operating temperature range (Ta=-40°C \sim +85°C) are the range by which basic circuit functions is operated. Characteristics and rated output power are not guaranteed in all power supply voltage ranges or temperature ranges.

(10) Electrical characteristics

Electrical characteristics show the typical performance of device and depend on board layout, parts, power supply. The standard value is in mounting device and parts on surface of ROHM's board directly.

(11) Power decoupling capacitor

Because the big peak current flows through the power line, the class-D amplifier has an influence on the audio characteristic by the capacitance value or the arrangement part of the power decoupling capacitor. Select enough small value(more than 10uF) of ESR(Equivalent Series Resistance), and arrange a power decoupling capacitor as close as possible to the terminal of IC. When a load is less than 8Ω , arrange a capacitor against to each power supply terminal as close as possible.

(12) Power supply

Use single power supply, because power supplies (4,10,15,21pin) of audio amplifier and regulator are shorted inside.

	Notes
No co	pying or reproduction of this document, in part or in whole, is permitted without the
consei	nt of ROHM Co.,Ltd.
The co	ntent specified herein is subject to change for improvement without notice.
The co	ontent specified herein is for the purpose of introducing ROHM's products (hereinafter
"Produ	icts"). If you wish to use any such Product, please be sure to refer to the specifications,
which	can be obtained from ROHM upon request.
Examp	ples of application circuits, circuit constants and any other information contained herein
illustra	te the standard usage and operations of the Products. The peripheral conditions must
be take	en into account when designing circuits for mass production.
Great	care was taken in ensuring the accuracy of the information specified in this document.
Howev	rer, should you incur any damage arising from any inaccuracy or misprint of such
inform	ation, ROHM shall bear no responsibility for such damage.
The tere	chnical information specified herein is intended only to show the typical functions of and
examp	les of application circuits for the Products. ROHM does not grant you, explicitly or
implici	tly, any license to use or exercise intellectual property or other rights held by ROHM and
other p	parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of	such technical information.
The Pr	oducts specified in this document are intended to be used with general-use electronic
equipr	nent or devices (such as audio visual equipment, office-automation equipment, commu-
nicatio	n devices, electronic appliances and amusement devices).
The Pr	oducts specified in this document are not designed to be radiation tolerant.
While	ROHM always makes efforts to enhance the quality and reliability of its Products, a
Produc	ct may fail or malfunction for a variety of reasons.
Please	be sure to implement in your equipment using the Products safety measures to guard
agains	t the possibility of physical injury, fire or any other damage caused in the event of the
failure	of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall b	ear no responsibility whatsoever for your use of any Product outside of the prescribed
scope	or not in accordance with the instruction manual.
The Pi	roducts are not designed or manufactured to be used with any equipment, device or
system	in which requires an extremely high level of reliability the failure or malfunction of which
may re	esult in a direct threat to human life or create a risk of human injury (such as a medical
instrur	ment, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-co	ontroller or other safety device). ROHM shall bear no responsibility in any way for use of
any of	the Products for the above special purposes. If a Product is intended to be used for any
such s	pecial purpose, please contact a ROHM sales representative before purchasing.
lf you	intend to export or ship overseas any Product or technology specified herein that may
be cor	strolled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain	a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Downloaded from Elcodis.com electronic components distributor