

Structure Silicon Monolithic Integrated Circuit

Product series PWM Driver for combi drive

Type BD7790KVT

Function • 3-phas

3-phase-sensor-less system, therefore don't need three hall sensors

for spindle motor driver.

· Stability high-speed start from the state of the stop for spindle motor driver.

OAbsolute maximum ratings

Parameter	Symbol	Limits	Unit	
Power MOS supply voltage	PVcc	6	V	
Control circuit power supply voltage	Vcc	6	V	
Maximum driver output current	IoMAX	3 #1	Α	
Power dissipation	Pd	1.37 #2	w	
Operating temperature range	Topr	-30~85	°C	
Storage temperature range	Tstg	-55∼150	င	
Joint part temperature	Tjmax	150	°C	

^{#1} The current is guaranteed 3.0A in case of the current is turned on/off in a duty-ratio of less than 1/10 with a maximum on-time of 5rns and when short brake.

○Recommended operating conditions(Ta=-30~+85°C)

(Set the power supply voltage taking allowable dissipation into considering)

Parameter	Symbol	MIN	TYP	MAX	Unit
Power MOS supply voltage	PVcc	4.0	5.0	5.5	٧
Control circuit power supply voltage	Vcc	4.0	5.0	5.5	٧

This product described in this specification isn't judged whether it applies to COCOM regulations. Please confirm in case of export. This product isn't designed for protection against radioactive rays.

Status of this document

The Japanese version of this document is the formal specification.

A customer may use this translation version only for a reference to help reading the formal version.

If there are any differences in translation version of this document, formal version takes priority.

Application example

ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment communication devices, electrical appliances, and electronic toys).

Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

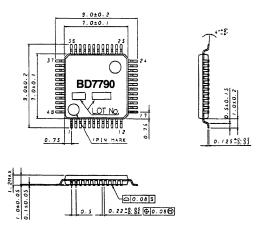
safety devices), please be sure to consult with our sales representative in advance.

ROHM assumes no responsibility for use of any circuits described herein, conveys no license under any patent or other right, and make no representations that the circuits are free from patent infringement.

^{#2} PCB (70mm×70mm×1.6mm,occupied copper foil is less than 3%,glass epoxy standard board) mounting. Reduce power by 11.0mW for each degree above 25°C.

O Electrical characteristics

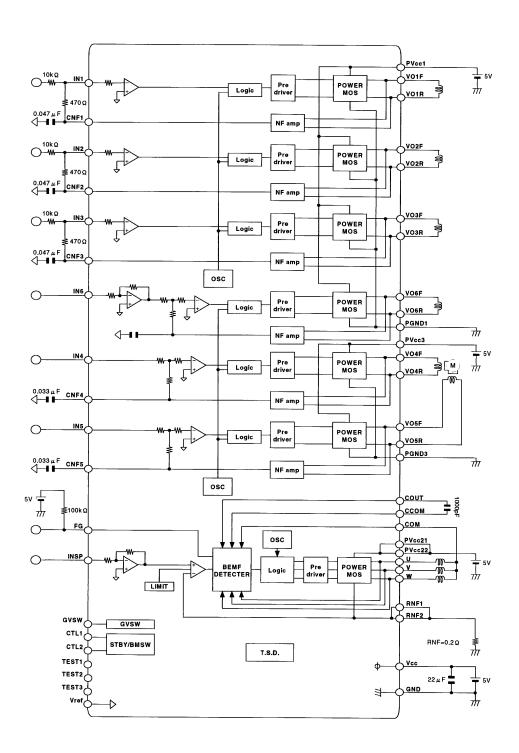
(Unless otherwise noted Ta=25°C , Vcc=PVcc=5V, Vref=1.25V, RL(ACT,STP,LOAD)= $8\Omega+47\mu$ H, RL(SP)= $2\Omega+47\mu$ H, RNF=0.2 Ω , CTL1,2=3.3V, GVSW=0V, VIN1,2,3,4,5,6=OPEN, VCOM=OPEN, VCCOM=OPEN, VCOUT=OPEN)


	Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Circuit current	Quiescent current	ICC		8	20	mA	CTL1,2=H
Circuit current	Current in standby mode	IST	_	_	0.2	mA	CTL1,2=L
Actuator driver	Input dead zone (one side)	VDZACT1,2,3	_	_	3	mV	
	Output offset voltage	VOO1,2,3	-50	_	50	mV	
	Voltage gain (CH1,2,3)	GVC1,2,3	15.5	17.5	19.5	dB	External input resistor 10kΩ
DIOCK	Output On resistor (top and bottom)	RON1,2,3	_	1.2	1.8	Ω	lo=500mA
	PWM frequency	f1,2,3CH	215	310	405	kHz	
	Input dead zone (one side)	VDZ4,5	10	30	50	mV	
Otomoine delice	Output offset voltage	VOO4,5	-50	_	50	mV	
Stepping driver block	Voltage gain	GVC4,5	15.5	17.5	19.5	dB	
DIOCK	Output On resistor (top and bottom)	RON4,5	_	1.6	2.4	Ω	lo=500mA
	PWM frequency	f4,5CH	215	310	405	kHz	
Loading driver block	Input dead zone (one side)	VDZ6	20	60	100	mV	CTL1=H, CTL2=L
	Output offset voltage	VOO6	-50	_	50	mV	CTL1=H, CTL2=L
	Voltage gain	GVC6	15.5	17.5	19.5	dB	CTL1=H, CTL2=L
	Output On resistor (top and bottom)	RON6	-	1.8	2.7	Ω	lo=500mA, CTL1=H, CTL2=L
	PWM frequency	f6CH	215	310	405	kHz	CTL1=H, CTL2=L
	Input dead zone of gm1(one side)	VDZSP1	2	30	100	mV	
	Input dead zone of gm2(one side)	VDZSP2	6	90	300	mV	GVSW=M
	Input dead zone of gm3(one side)	VDZSP3	10	150	500	mV	GVSW=H
Coindle driver	Input output gain 1	gm1	0.88	1.1	1.32	ΑV	
Spindle driver	Input output gain 2	gm2	0.28	0.36	0.44	AV	GVSW=M
block	Input output gain 3	gm3	0.17	0.22	0.27	ΑV	GVSW=H
	Output On resistor (top and bottom)	RONSP	_	0.6	1.4	Ω	lo=500mA
	Output limit voltage	VLIMSP	0.18	0.22	0.26	٧	
	PWM frequency	fSP	_	167	_	kHz	
Others	Vref drop mute ON threshold voltage	VMVref	_	0.7	1.0	V	
	Vcc drop mute ON threshold voltage	VMVccD	3.2	3.6	4.0	٧	
	CTL1 L voltage	VCTL1L	0	_	1.0	V	
	CTL1 H voltage	VCTL1H	2.0	_	3.3	V	
	CTL2, GVSW L voltage	VCTL2L, VGVL	0		1.0	V	
	CTL2, GVSW M(Hi-z) voltage	VCTL2M, VGVM	1.6	_	2.0	V	OPEN (Hi-z) is also available.
	CTL2, GVSW H voltage	VCTL2H, VGVH	2.6	_	3.3	V	

GVSW	L L	M (Hi-z)	Н
Gain mode	gm1	gm2	gm3

CTL1	CTL2	Brake mode	SPINDLE Output	CH1,2,3 Output	CH4,5 Output	CH6 Output
	L		Hi-Z	Hi-Z	Hi-Z	Hi-Z
L	M	- Short brake	ACTIVE	Hi-Z	Hi-Z	Hi-Z
	Н		ACTIVE	ACTIVE	ACTIVE	Hi-Z
н м	L		Hi-Z	Hi-Z	ACTIVE	ACTIVE
	M (Hi-z)	Reverse brake	ACTIVE	Hi-Z	Hi-Z	Hi-Z
	Н		ACTIVE	ACTIVE	ACTIVE	Hi-Z

Please supply the middle level voltage for CTL2 when using it in the mode of CTL1=L and CTL2=M.


OPackage outlines

(UNIT : mm)

OBlock diagram / Application circuit

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUPOPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@ rohm.co.jp

Copyright © 2007 ROHM CO.,LTD.

ROHM CO., LTD. 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

TEL:+81-75-311-2121 FAX:+81-75-315-0172

Appendix1-Rev2.0