## ZX3CDBS1M832

## MPPS ${ }^{\text {TM }}$ Miniature Package Power Solutions 20V NPN LOW SATURATION TRANSISTOR AND 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

SUMMARY
NPN Transistor $-\mathrm{V}_{\text {CEO }}=20 \mathrm{~V} ; \mathrm{R}_{\text {SAT }}=47 \mathrm{~m} \Omega ; \mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~A}$
Schottky Diode - $V_{R}=40 \mathrm{~V} ; \mathrm{V}_{\mathrm{F}}=500 \mathrm{mV}(@ 1 \mathrm{~A}) ; \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$

## DESCRIPTION

Packaged in the new innovative $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLP this combination dual comprises an ultra low saturation NPN transistor and a 1A Schottky barrier diode. This excellent combination provides users with highly efficient performance in applications including DC-DC and charging circuits.


Users will also gain several other key benefits:
Performance capability equivalent to much larger packages
$3 \mathrm{~mm} \times 2 \mathrm{~mm}$ Dual Die MLP
Improved circuit efficiency \& power levels
PCB area and device placement savings
Lower package height ( 0.9 mm nom)
Reduced component count

## FEATURES

- Extremely Low Saturation Voltage (150mV @1A)
- $\mathrm{H}_{\mathrm{FE}}$ characterised up to 6A
- $\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~A}$ Continuous Collector Current

- Extremely Low $\mathrm{V}_{\mathrm{F}}$, fast switching Schottky
- $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLP


## APPLICATIONS

- DC - DC Converters

PINOUT

- Mobile Phones
- Charging Circuits
- Motor control

ORDERING INFORMATION

| DEVICE | REEL | TAPE <br> WIDTH | QUANTITY <br> PER REEL |
| :--- | :---: | :---: | :---: |
| ZX3CDBS1M832TA | $7^{\prime \prime}$ | 8 mm | 3000 |
| ZX3CDBS1M832TC | $13^{\prime \prime}$ | 8 mm | 10000 |

## DEVICE MARKING

BS1

ISSUE 3- OCTOBER 2007


## ZX3CDBS1M832

## ABSOLUTE MAXIMUM RATINGS.

| PARAMETER | SYMBOL | VALUE | UNIT |
| :---: | :---: | :---: | :---: |
| Transistor |  |  |  |
| Collector-Base Voltage | $\mathrm{V}_{\text {CBO }}$ | 40 | V |
| Collector-Emitter Voltage | $\mathrm{V}_{\text {CEO }}$ | 20 | V |
| Emitter-Base Voltage | $\mathrm{V}_{\text {EBO }}$ | 7.5 | V |
| Peak Pulse Current | $\mathrm{I}_{\text {CM }}$ | 12 | A |
| Continuous Collector Current (a)(f) | $\mathrm{I}_{\mathrm{C}}$ | 4.5 | A |
| Continuous Collector Current (b)(f) | $\mathrm{I}_{\mathrm{C}}$ | 5 | A |
| Base Current | $\mathrm{I}_{\mathrm{B}}$ | 1000 | mA |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (a)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 1.5 \\ & 12 \end{aligned}$ | $\mathrm{W}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (b)(f) Linear Derating Factor | $P_{\text {D }}$ | $\begin{aligned} & 2.45 \\ & 19.6 \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (c)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 1 \\ & 8 \end{aligned}$ | $\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (d)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 1.13 \\ 9 \end{gathered}$ | $\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}(\mathrm{d})(\mathrm{g})$ Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} \hline 1.7 \\ 13.6 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at TA $=25^{\circ} \mathrm{C}(\mathrm{e})(\mathrm{g})$ Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 3 \\ 24 \end{gathered}$ | $\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Junction Temperature | $\mathrm{T}_{\mathrm{j}}$ | 150 | ${ }^{\circ} \mathrm{C}$ |

## THERMAL RESISTANCE

| PARAMETER | SYMBOL | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| Junction to Ambient (a)(f) | $\mathrm{R}_{\theta \mathrm{JA}}$ | 83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (b)(f) | $\mathrm{R}_{\theta \mathrm{JA}}$ | 51 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (c)(f) | $\mathrm{R}_{\theta \mathrm{JA}}$ | 125 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (d)(f) | $\mathrm{R}_{\theta J A}$ | 111 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (d)(g) | $\mathrm{R}_{\theta J A}$ | 73.5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (e)(g) | $\mathrm{R}_{\theta \mathrm{JA}}$ | 41.7 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Notes
(a) For a dual device surface mounted on 8 sq cm single sided 2 zz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(b) Measured at $\mathrm{t}<5$ secs for a dual device surface mounted on 8 sq cm single sided $20 z$ copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(c) For a dual device surface mounted on 8 sq cm single sided $20 z$ copper on FR4 PCB, in still air conditions with minimal lead connections only. d) For a dual device surface mounted on 10 sq cm single sided 1 oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 85 sq cm single sided 20 copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(f) For a dual device with one active die.
(g) For dual device with 2 active die running at equal power.
(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph
i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5 mm thick FR4 board using minimum copper 1 oz weight, 1 mm wide tracks and one half of the device active is $\mathrm{Rth}=250^{\circ} \mathrm{C} / \mathrm{W}$ giving a power rating of Ptot $=500 \mathrm{~mW}$.

## ZX3CDBS1M832

TRANSISTOR TYPICAL CHARACTERISTICS


## ZX3CDBS1M832

## ABSOLUTE MAXIMUM RATINGS.

| PARAMETER | SYMBOL | VALUE | UNIT |
| :---: | :---: | :---: | :---: |
| Schottky Diode |  |  |  |
| Continuous Reverse Voltage | $\mathrm{V}_{\mathrm{R}}$ | 40 | V |
| Forward Voltage @ $\mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}$ (typ) | $\mathrm{V}_{\mathrm{F}}$ | 425 | mV |
| Forward Current | $\mathrm{I}_{\mathrm{F}}$ | 1850 | mA |
| Average Peak Forward Current $\mathrm{D}=50 \%$ | $\mathrm{I}_{\text {FAV }}$ | 3 | A |
| Non Repetitive Forward Current $t \leq 100 \mu \mathrm{~s}$ $\mathrm{t} \leq 10 \mathrm{~ms}$ | $\mathrm{I}_{\text {FSM }}$ | $\begin{gathered} 12 \\ 7 \end{gathered}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (a)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 1.2 \\ & 12 \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (b)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 2 \\ 20 \end{gathered}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (c)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 0.8 \\ 8 \end{gathered}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (d)(f) Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 0.9 \\ 9 \end{gathered}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}(\mathrm{d})(\mathrm{g})$ Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 1.36 \\ & 13.6 \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}(\mathrm{e})(\mathrm{g})$ Linear Derating Factor | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 2.4 \\ & 24 \end{aligned}$ | $\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Junction Temperature | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |

## THERMAL RESISTANCE

| PARAMETER | SYMBOL | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| Junction to Ambient (a)(f) | $\mathrm{R}_{\theta J A}$ | 83 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (b)(f) | $\mathrm{R}_{\theta J A}$ | 51 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (c)(f) | $\mathrm{R}_{\theta J A}$ | 125 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (d)(f) | $\mathrm{R}_{\theta J A}$ | 111 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (d)(g) | $\mathrm{R}_{\theta J A}$ | 73.5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Ambient (e)(g) | $\mathrm{R}_{\theta J A}$ | 41.7 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Notes
(a) For a dual device surface mounted on 8 sq cm single sided 2 zz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(b) Measured at $\mathrm{t}<5$ secs for a dual device surface mounted on 8 sq cm single sided 20 copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(c) For a dual device surface mounted on 8 sq cm single sided $20 z$ copper on FR4 PCB, in still air conditions with minimal lead connections only. (d) For a dual device surface mounted on 10 sq cm single sided $10 z$ copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 85 sq cm single sided $20 z$ copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device. (f) For a dual device with one active die.
(g) For dual device with 2 active die running at equal power.
(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5 mm thick FR4 board using minimum copper 1 oz weight, 1 mm wide tracks and one half of the device active is $R t h=250^{\circ} \mathrm{C} / \mathrm{W}$ giving a power rating of Ptot $=400 \mathrm{~mW}$.

## ZX3CDBS1M832

SCHOTTKY TYPICAL CHARACTERISTICS


## ZX3CDBS1M832

ELECTRICAL CHARACTERISTICS (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated).

| PARAMETER | SYMBOL | MIN. | TYP. | MAX. | UNIT | CONDITIONS. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRANSISTOR ELECTRICAL CHARACTERISTICS |  |  |  |  |  |  |
| Collector-Base Breakdown Voltage | $\mathrm{V}_{(\mathrm{BR}) \text { cbo }}$ | 40 | 100 |  | V | $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ |
| Collector-Emitter Breakdown Voltage | $V_{\text {(BR)CEO }}$ | 20 | 27 |  | V | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ * |
| Emitter-Base Breakdown Voltage | $\mathrm{V}_{\text {(BR)EBO }}$ | 7.5 | 8.2 |  | V | $\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$ |
| Collector Cut-Off Current | $\mathrm{I}_{\text {Cbo }}$ |  |  | 25 | nA | $\mathrm{V}_{\mathrm{CB}}=32 \mathrm{~V}$ |
| Emitter Cut-Off Current | $\mathrm{I}_{\text {ebo }}$ |  |  | 25 | nA | $\mathrm{V}_{\mathrm{EB}}=6 \mathrm{~V}$ |
| Collector Emitter Cut-Off Current | $\mathrm{I}_{\text {CES }}$ |  |  | 25 | nA | $\mathrm{V}_{\text {CES }}=16 \mathrm{~V}$ |
| Collector-Emitter Saturation Voltage | $\mathrm{V}_{\text {CE (sat) }}$ |  | $\begin{gathered} \hline 8 \\ 90 \\ 115 \\ 190 \\ 210 \end{gathered}$ | $\begin{gathered} 15 \\ 150 \\ 135 \\ 250 \\ 270 \end{gathered}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=125 \mathrm{~mA}^{*} \end{aligned}$ |
| Base-Emitter Saturation Voltage | $V_{\text {BE (sat) }}$ |  | 0.98 | -1.05 | V | $\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=125 \mathrm{~mA} *$ |
| Base-Emitter Turn-On Voltage | $\mathrm{V}_{\text {BE(on) }}$ |  | 0.88 | -0.95 | V | $\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$ * |
| Static Forward Current Transfer Ratio | $\mathrm{h}_{\text {FE }}$ | $\begin{aligned} & 200 \\ & 300 \\ & 200 \\ & 100 \end{aligned}$ | $\begin{aligned} & 400 \\ & 450 \\ & 360 \\ & 180 \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \\ & \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}^{*} \end{aligned}$ |
| Transition Frequency | $\mathrm{f}_{\mathrm{T}}$ | 100 | 140 |  | MHz | $\begin{aligned} & I_{C}=50 \mathrm{~mA}, V_{C E}=10 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$ |
| Output Capacitance | $\mathrm{C}_{\text {obo }}$ |  | 23 | 30 | pF | $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |
| Turn-On Time | ${ }^{\text {t }}$ (on) |  | 170 |  | ns | $\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{I}_{C}=3 \mathrm{~A}$ |
| Turn-Off Time | ${ }^{\text {t }}$ (off) |  | 400 |  | ns | $\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=$ |
| SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS |  |  |  |  |  |  |
| Reverse Breakdown Voltage | $\mathrm{V}_{\text {(BR) }}$ | 40 | 60 |  | V | $\mathrm{I}_{\mathrm{R}}=300 \mu \mathrm{~A}$ |
| Forward Voltage | $\mathrm{V}_{\mathrm{F}}$ |  | $\begin{aligned} & 240 \\ & 265 \\ & 305 \\ & 355 \\ & 390 \\ & 425 \\ & 495 \\ & 420 \end{aligned}$ | 270 290 340 400 450 500 600 - | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=750 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=1500 \mathrm{~mA} A^{*} \\ & \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}, \mathrm{~T}_{\mathrm{a}}=100^{\circ} \mathrm{C}^{*} \end{aligned}$ |
| Reverse Current | $\mathrm{I}_{\mathrm{R}}$ |  | 50 | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$ |
| Diode Capacitance | $\mathrm{C}_{\mathrm{D}}$ |  | 25 |  | pF | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$ |
| Reverse Recovery Time | $\mathrm{t}_{\mathrm{rr}}$ |  | 12 |  | ns | switched from $\begin{aligned} & I_{F}=500 \mathrm{~mA} \text { to } I_{R}=500 \mathrm{~mA} \\ & \text { Measured at } I_{R}=50 \mathrm{~mA} \end{aligned}$ |

*Measured under pulsed conditions.

## ZX3CDBS1M832

TRANSISTOR TYPICAL CHARACTERISTICS


ISSUE 3- OCTOBER 2007

## ZX3CDBS1M832

SCHOTTKY TYPICAL CHARACTERISTICS


## ZX3CDBS1M832

MLP832 PACKAGE OUTLINE (3mm x 2 mm Micro Leaded Package)

*Exposed Flags. Solder connection to improve thermal dissipation is optional.
F1 at collector 1 potential
F2 at collector 2 potential
CONTROLLING DIMENSIONS IN MILLIMETRES
APPROX. CONVERTED DIMENSIONS IN INCHES
MLP832 PACKAGE DIMENSIONS

|  | MILLIMETRES |  | INCHES |  | DIM | MILLIMETRES |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN. | MAX. | MIN. | MAX. |  | MIN. | MAX. | MIN. | MAX. |
| A | 0.80 | 1.00 | 0.031 | 0.039 | e | 0.65 REF |  | 0.0256 BSC |  |
| A1 | 0.00 | 0.05 | 0.00 | 0.002 | E |  |  | 0.07 | BSC |
| A2 | 0.65 | 0.75 | 0.0255 | 0.0295 | E2 | 0.43 | 0.63 | 0.017 | 0.0249 |
| A3 | 0.15 | 0.25 | 0.006 | 0.0098 | E4 | 0.16 | 0.36 | 0.006 | 0.014 |
| b | 0.24 | 0.34 | 0.009 | 0.013 | L | 0.20 | 0.45 | 0.0078 | 0.0157 |
| b1 | 0.17 | 0.30 | 0.0066 | 0.0118 | L2 | - | 0.125 | 0.00 | 0.005 |
| D | 3.00 BSC |  | 0.118 BSC |  | r | 0.075 BSC |  | 0.0029 BSC |  |
| D2 | 0.82 | 1.02 | 0.032 | 0.040 | $\Theta$ | $0^{\circ}$ | $12^{\circ}$ | $0^{\circ}$ | $12^{\circ}$ |
| D3 | 1.01 | 1.21 | 0.0397 | 0.0476 |  |  |  |  |  |

© Zetex Semiconductors plc 2004

| Europe | Americas | Asia Pacific | Corporate Headquarters |
| :---: | :---: | :---: | :---: |
| Zetex GmbH | Zetex Inc | Zetex (Asia) Ltd | Zetex Semiconductors plc |
| Streitfeldstraße 19 | 700 Veterans Memorial Hwy | 3701-04 Metroplaza Tower 1 | Lansdowne Road, Chadderton |
| D-81673 München | Hauppauge, NY 11788 | Hing Fong Road, Kwai Fong | Oldham, OL9 9TY |
| Germany | USA | Hong Kong | United Kingdom |
| Telefon: (49) 894549490 | Telephone: (1) 6313602222 | Telephone: (852) 26100611 | Telephone (44) 1616224444 |
| Fax: (49) 8945494949 | Fax: (1) 6313608222 | Fax: (852) 24250494 | Fax: (44) 1616224446 |
| europe.sales@zetex.com | usa.sales@zetex.com | asia.sales@zetex.com | hq@zetex.com |

These offices are supported by agents and distributors in major countries world-wide.
This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com
ISSUE 3- OCTOBER 2007

