DZT955
LOW $\mathrm{V}_{\text {CE(SAT) }}$ PNP SURFACE MOUNT TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Ideally Suited for Automated Assembly Processes
- Ideal for Medium Power Switching or Amplification Applications
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

SOT-223

- Case: SOT-223
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish - Matte Tin annealed over Copper leadframe (Lead Free Plating). Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 4
- Ordering Information: See Page 4
- Weight: 0.115 grams (approximate)

TOP VIEW
Schematic and Pin Configuration

Maximum Ratings $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-180	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-140	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-6	V
Continuous Collector Current	I_{C}	-4	A
Peak Pulse Current	I_{CM}	-10	A

Thermal Characteristics

Characteristic	Symbol	Value	
Power Dissipation (Note 3) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1	W
Thermal Resistance, Junction to Ambient Air (Note 3) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\theta \mathrm{JA}}$	125	
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j},} \mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes: 1. No purposefully added lead.
2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead free/index.php.
3. Device mounted on FR-4 PCB; pad layout as shown on page 4 or in Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf

Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)						
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ CBO	-180	-	-	V	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$	-140	-	-	V	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
Emitter-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) EBO }}$	-6	-	-	V	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$
Collector Cutoff Current	$\mathrm{I}_{\text {cbo }}$	-	-	$\begin{gathered} -50 \\ -1 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C B}=-150 \mathrm{~V}, I_{E}=0 \\ & V_{C B}=-150 \mathrm{~V}, I_{E}=0, \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$
Emitter Cutoff Current	$\mathrm{I}_{\text {EBO }}$	-	-	-10	nA	$\mathrm{V}_{\text {EB }}=-6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$
ON CHARACTERISTICS (Note 4)						
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	-	-	$\begin{aligned} & \hline-60 \\ & -120 \\ & -150 \\ & -370 \\ & \hline \end{aligned}$	mV	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-300 \mathrm{~mA} \end{aligned}$
Base-Emitter Saturation Voltage	$\mathrm{V}_{\text {BE(SAT) }}$	-	-	-1110	mV	$\mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-300 \mathrm{~mA}$
Base-Emitter Turn-On Voltage	$\mathrm{V}_{\text {BE(ON) }}$	-	-	-950	mV	$\mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5 \mathrm{~V}$
DC Current Gain	$h_{\text {FE }}$	100 100 75 -	$\bar{\square}$	$\overline{300}$ -	-	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \\ & \hline \end{aligned}$
SMALL SIGNAL CHARACTERISTICS						
Current Gain-Bandwidth Product	f_{T}	-	150	-	MHz	$\begin{aligned} & I_{\mathrm{c}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Output Capacitance	$\mathrm{C}_{\text {obo }}$	-	40	-	pF	$\mathrm{V}_{\mathrm{CB}}=-20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
SWITCHING CHARACTERISTICS						
Switching Times	$\begin{aligned} & \mathrm{t}_{\mathrm{t}} \\ & \mathrm{t}_{\mathrm{offf}} \end{aligned}$	-	$\begin{gathered} \hline 85 \\ 430 \end{gathered}$	-	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=-100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B} 2}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=-50 \mathrm{~V} \end{aligned}$

Notes: 4. Measured under pulsed conditions. Pulse width $=300 \mu$ s. Duty cycle $\leq 2 \%$.

Fig. 1 Max Power Dissipation vs. Ambient Temperature

Fig. 2 Typical Collector Current vs. Collector-Emitter Voltage

Fig. 3 Typical DC Current Gain vs. Collector Current

Fig. 5 Typical Base-Emitter Turn-On Voltage vs. Collector Current

Fig. 7 Typical Output Capacitance Characteristics

I_{C}, COLLECTOR CURRENT (A)
Fig. 4 Typical Collector-Emitter Saturation Voltage vs. Collector Current

Fig. 6 Typical Base-Emitter Saturation Voltage vs. Collector Current

Fig. 8 Typical Gain-Bandwidth Product vs. Collector Current

Ordering Information (Note 5)

Device	Packaging	Shipping
DZT955-13	SOT-223	2500/Tape \&Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/ap02007.pdf.

Marking Information

Package Outline Dimensions

SOT-223			
Dim	Min	Max	Typ
A	1.55	1.65	1.60
A1	0.010	0.15	0.05
b1	2.90	3.10	3.00
b2	0.60	0.80	0.70
C	0.20	0.30	0.25
D	6.45	6.55	6.50
E	3.45	3.55	3.50
E1	6.90	7.10	7.00
e	-	-	4.60
e1	-	-	2.30
L	0.85	1.05	0.95
Q	0.84	0.94	0.89
All Dimensions in	$\mathbf{m m}$		

Suggested Pad Layout: (Dimensions in mm)

IMPORTANT NOTICE
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT
Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

