Delphi DNL, Non-Isolated Point of Load DC/DC Power Modules: 8.3-14Vin, 0.75-5.0V/16A out The Delphi series DNL, 8.3~14V input, single output, non-isolated point of load DC/DC converters are the latest offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. The DNL series provides a programmable output voltage from 0.75V to 5.0V through an external trimming resistor. The DNL converters have flexible and programmable tracking and sequencing features to enable a variety of sequencing and tracking between several point of load power modules. This product family is available in a surface mount or SIP package and provides up to 16A of output current in an industry standard footprint and pinout. With creative design technology and optimization of component placement, these converters possess outstanding electrical and thermal performance and extremely high reliability under highly stressful operating conditions. #### **FEATURES** - High efficiency: 92% @ 12Vin, 3.3V/16A out - Small size and low profile: (SMD) 33.0x 13.5x 8.8mm (1.30" x 0.53" x 0.35") - Standard footprint - Voltage and resistor-based trim - Pre-bias startup - Output voltage tracking - No minimum load required - Output voltage programmable from 0.75Vdc to 5.0Vdc via external resistor - Fixed frequency operation (300KHz) - Input UVLO, output OTP, OCP - Remote ON/OFF (default: positive) - Remote sense - ISO 9001, TL 9000, ISO 14001, QS 9000, OHSAS 18001 certified manufacturing facility - UL/cUL 60950 (US & Canada) Recognized, and TUV (EN60950) certified. - CE mark meets 73/23/EEC and 93/68/EEC directives #### **OPTIONS** - Negative On/Off logic - Tracking feature - SMD package #### **APPLICATIONS** - Telecom / DataCom - Distributed power architectures - Servers and workstations - LAN / WAN applications - Data processing applications DATASHEET DS_DNL10SMD16_03052009 # **TECHNICAL SPECIFICATIONS** T_A = 25°C, airflow rate = 300 LFM, V_{in} = 8.3Vdc and 14Vdc, nominal Vout unless otherwise noted. | PARAMETER | BVdc and 14Vdc, nominal Vout unless otherwise notes and CONDITIONS | DNL10S0A0S16NFD | | | | | |--|---|-----------------|--------------|---------------|------------------|--| | | | Min. | Тур. | Max. | Units | | | ABSOLUTE MAXIMUM RATINGS | | | | 15 | Vdc | | | Input Voltage (Continuous) Tracking Voltage | | 0 | | 15
Vin,max | Vdc | | | Operating Temperature | Refer to Figure 31 for the measuring point | -40 | | +125 | °C | | | Storage Temperature | J. J | -55 | | +125 | °C | | | INPUT CHARACTERISTICS | | | | | | | | Operating Input Voltage | Vo,set≤3.63Vdc | 8.3
8.3 | 12
12 | 14
13.2 | V | | | Input Under-Voltage Lockout | Vo,set>3.63Vdc | 0.3 | 12 | 13.2 | V | | | Turn-On Voltage Threshold | | | 7.9 | | V | | | Turn-Off Voltage Threshold | | | 7.8 | | V | | | Maximum Input Current | Vin=Vin,min to Vin,max, Io=Io,max | | 100 | 11.2 | Α | | | No-Load Input Current Off Converter Input Current | | | 100 | | mA
mA | | | Inrush Transient | Vin= Vin,min to Vin,max, Io=Io,min to Io,max | | 2 | 0.4 | A ² S | | | Recommended Input Fuse | | | | 15 | Α | | | OUTPUT CHARACTERISTICS | | | | | | | | Output Voltage Set Point | Vin=12V, Io=Io,max | -2.0 | Vo,set | +2.0 | % Vo,set | | | Output Voltage Adjustable Range | | 0.7525 | | 5 | V | | | Output Voltage Regulation Over Line | Vin=Vin,min to Vin,max | | 0.3 | | % Vo,set | | | Over Load | lo=lo,min to lo,max | | 0.4 | | % Vo,set | | | Over Temperature | Ta= -40°C to 85°C | | 0.4 | | % Vo,set | | | Total Output Voltage Range | Over sample load, line and temperature | -2.5 | | +3.5 | % Vo,set | | | Output Voltage Ripple and Noise Peak-to-Peak | 5Hz to 20MHz bandwidth | | 50 | 75 | m)/ | | | RMS | Vin=min to max, lo=min to max1µF ceramic, 10µF Tan Vin=min to max, lo=min to max1µF ceramic, 10µF Tan | | 15 | 30 | mV
mV | | | Output Current Range | VIII-IIIII to IIIax, Io-IIIII to IIIax ipi ceraiiie, iopi iaii | 0 | 10 | 16 | A | | | Output Voltage Over-shoot at Start-up | Vout=3.3V | | | 1 | % Vo,set | | | Output DC Current-Limit Inception | | | 180 | | % lo | | | Output Short-Circuit Current (Hiccup mode) | lo,s/c | | 3 | | Adc | | | DYNAMIC CHARACTERISTICS Dynamic Load Response | 10μF Tan & 1μF ceramic load cap, 2.5A/μs, Vin=12V | | | | | | | Positive Step Change in Output Current | 50% lo, max to 100% lo, max | | 200 | | mVpk | | | Negative Step Change in Output Current | 100% Io, max to 50% Io, max | | 200 | | mVpk | | | Settling Time to 10% of Peak Deviation | | | 25 | | μs | | | Turn-On Transient | lo=lo.max | | | | | | | Start-Up Time, From On/Off Control Start-Up Time, From Input | Von/off, Vo=10% of Vo,set Vin=Vin,min, Vo=10% of Vo,set | | 5
5 | | ms
ms | | | Output Voltage Rise Time | Time for Vo to rise from 10% to 90% of Vo,set | | 4 | 6 | ms | | | Output Capacitive Load | Full load; ESR ≥1mΩ | | | 1000 | μF | | | | Full load; ESR ≥10mΩ, Vin<9.0V | | | 3500 | μF | | | FEELCIENCY | Full load; ESR ≥10mΩ , Vin≥9.0V | | | 5000 | μF | | | Vo=0.75V | Vin=12V, Io=Io,max | | 79.0 | | % | | | Vo=1.2V | Vin=12V, Io=Io,max | | 85.0 | | % | | | Vo=1.5V | Vin=12V, Io=Io,max | | 87.0 | | % | | | Vo=1.8V | Vin=12V, Io=Io,max | | 89.0 | | % | | | Vo=2.5V | Vin=12V, Io=Io,max | | 91.0 | | % | | | Vo=3.3V
Vo=5.0V | Vin=12V, Io=Io,max Vin=12V, Io=Io,max | | 92.0
94.0 | | % | | | FEATURE CHARACTERISTICS | VIII 12 V, 10 10,111ux | | U-T.U | | 70 | | | Switching Frequency | | | 300 | | kHz | | | ON/OFF Control, (Negative logic) | | | | | | | | Logic Low Voltage | Module On, Von/off | -0.2
2.5 | | 0.3 | V | | | Logic High Voltage Logic Low Current | Module Off, Von/off Module On, Ion/off | 2.5 | | Vin,max
10 | uA | | | Logic High Current | Module Off, Ion/off | | 0.2 | 1 | mA | | | ON/OFF Control, (Positive Logic) | | | | | | | | Logic High Voltage | Module On, Von/off | | | Vin,max | V | | | Logic Low Voltage | Module Off, Von/off | -0.2 | | 0.3 | V | | | Logic High Current Logic Low Current | Module On, Ion/off Module Off, Ion/off | | 0.2 | 10 | uA
mA | | | Tracking Slew Rate Capability | ividuale Oil, lotiroil | 0.1 | 0.2 | 2 | V/msec | | | Tracking Delay Time | Delay from Vin.min to application of tracking voltage | 10 | | _ | ms | | | Tracking Accuracy | Power-up, subject to 2V/mS | | 100 | 200 | mV | | | | Power-down, subject to 1V/mS | | 200 | 400 | mV | | | Dameta Caras Danes | | | | | | | | Remote Sense Range | | | | 0.1 | V | | | GENERAL SPECIFICATIONS | | | 8.4 | 0.1 | | | | | lo=80%lo, max, Ta=25°℃ | | 8.4
9 | 0.1 | M hours grams | | # **ELECTRICAL CHARACTERISTICS CURVES** 90 EFFICIENCY(%) 85 80 75 Vin=8.3V 70 Vin=12V 65 Vin=14V 60 3 5 9 15 13 LOAD (A) **Figure 1:** Converter efficiency vs. output current (0.75V output voltage) Figure 2: Converter efficiency vs. output current (1.2V output voltage) Figure 3: Converter efficiency vs. output current (1.5V output voltage) Figure 4: Converter efficiency vs. output current (1.8V output voltage) Figure 5: Converter efficiency vs. output current (2.5V output voltage) **Figure 6:** Converter efficiency vs. output current (3.3V output voltage) # **ELECTRICAL CHARACTERISTICS CURVES** Figure 7: Converter efficiency vs. output current (5.0V output voltage) Figure 8: Output ripple & noise at 12Vin, 2.5V/16A out Figure 10: Turn on delay time at 12vin, 5.0V/16A out Figure 9: Output ripple & noise at 12Vin, 5.0V/16A out Figure 11: Turn on delay time at Remote On/Off, 5.0V/16A out # **ELECTRICAL CHARACTERISTICS CURVES** **Figure 12:** Turn on Using Remote On/Off with external capacitors (Co= 5000 μF), 5.0V/16A out Figure 13: Typical transient response to step load change at 2.5A/μS from 100% to 50% of lo, max at 12Vin, 5.0V out (Cout = 1υF ceramic, 10μF tantalum) Figure 15: Output short circuit current 12Vin, 0.75Vout (10A/div) Figure 14: Typical transient response to step load change at 2.5A/μS from 50% to 100% of lo, max at 12Vin, 5.0V out (Cout = 1uF ceramic, 10μF tantalum) Figure 16: Turn on with Prebias 12Vin, 5V/0A out, Vbias =3.3Vdc ### TEST CONFIGURATIONS Note: Input reflected-ripple current is measured with a simulated source inductance. Current is measured at the input of the module. Figure 17: Input reflected-ripple test setup Note: Use a 10µF tantalum and 1µF capacitor. Scope measurement should be made using a BNC connector. Figure 18: Peak-peak output noise and startup transient measurement test setup Figure 19: Output voltage and efficiency measurement test setup Note: All measurements are taken at the module terminals. When the module is not soldered (via socket), place Kelvin connections at module terminals to avoid measurement errors due to contact resistance. $$\eta = (\frac{Vo \times Io}{Vi \times Ii}) \times 100 \quad \%$$ DS_DNL10SMD_03052009 ### **DESIGN CONSIDERATIONS** ### **Input Source Impedance** To maintain low-noise and ripple at the input voltage, it is critical to use low ESR capacitors at the input to the module. Figure 20 shows the input ripple voltage (mVp-p) for various output models using 6x47 uF low ESR tantalum capacitors (SANYO P/N:16TPB470M, 47uF/16V or equivalent) and 6x22 uF very low ESR ceramic capacitors (TDK P/N:C3225X7S1C226MT, 22uF/16V or equivalent). The input capacitance should be able to handle an AC ripple current of at least: $$Irms = Iout \sqrt{\frac{Vout}{Vin}} \left(1 - \frac{Vout}{Vin}\right) \quad Arms$$ Figure 20: Input ripple voltage for various output models, Io = 16A (Cin = 6x47uF tantalum capacitors and 6x22uF ceramic capacitors at the input) # **DESIGN CONSIDERATIONS (CON.)** The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the module. An input capacitance must be placed close to the modules input pins to filter ripple current and ensure module stability in the presence of inductive traces that supply the input voltage to the module. ### Safety Considerations For safety-agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards. For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a maximum 15A of glass type fast-acting fuse in the ungrounded lead. ### **FEATURES DESCRIPTIONS** ### Remote On/Off The DNL series power modules have an On/Off pin for remote On/Off operation. Both positive and negative On/Off logic options are available in the DNL series power modules. For positive logic module, connect an open collector (NPN) transistor or open drain (N channel) MOSFET between the On/Off pin and the GND pin (see figure 21). Positive logic On/Off signal turns the module ON during the logic high and turns the module OFF during the logic low. When the positive On/Off function is not used, leave the pin floating or tie to Vin (module will be On). For negative logic module, the On/Off pin is pulled high with an external pull-up resistor (see figure 22) Negative logic On/Off signal turns the module OFF during logic high and turns the module ON during logic low. If the negative On/Off function is not used, leave the pin floating or tie to GND. (module will be On) Figure 21: Positive remote On/Off implementation Figure 22: Negative remote On/Off implementation #### **Over-Current Protection** To provide protection in an output over load fault condition, the unit is equipped with internal over-current protection. When the over-current protection is triggered, the unit enters hiccup mode. The units operate normally once the fault condition is removed. # **FEATURES DESCRIPTIONS (CON.)** ### **Over-Temperature Protection** The over-temperature protection consists of circuitry that provides protection from thermal damage. If the temperature exceeds the over-temperature threshold the module will shut down. The module will try to restart after shutdown. If the over-temperature condition still exists during restart, the module will shut down again. This restart trial will continue until the temperature is within specification #### **Remote Sense** The DNL provide Vo remote sensing to achieve proper regulation at the load points and reduce effects of distribution losses on output line. In the event of an open remote sense line, the module shall maintain local sense regulation through an internal resistor. The module shall correct for a total of 0.1V of loss. The remote sense line impedance shall be < 10Ω . Figure 23: Effective circuit configuration for remote sense operation ### **Output Voltage Programming** The output voltage of the DNL can be programmed to any voltage between 0.75Vdc and 5.0Vdc by connecting one resistor (shown as Rtrim in Figure 24) between the TRIM and GND pins of the module. Without this external resistor, the output voltage of the module is 0.7525 Vdc. To calculate the value of the resistor Rtrim for a particular output voltage Vo, please use the following equation: $$Rtrim := \left(\frac{10500}{\text{Vo} - 0.7525} - 1000\right) \cdot \Omega$$ Rtrim is the external resistor in Ω Vo is the desired output voltage DS_DNL10SMD_03052009 For example, to program the output voltage of the DNL module to 3.3Vdc, Rtrim is calculated as follows: Rtrim := $$\left(\frac{10500}{2.5475} - 1000\right) \cdot \Omega$$ Rtrim = $3.122 \text{ k}\Omega$ DNL can also be programmed by applying a voltage between the TRIM and GND pins (Figure 25). The following equation can be used to determine the value of Vtrim needed for a desired output voltage Vo: Vtrim := $$0.7 - [(Vo - 0.7525) \cdot 0.0667]$$ Vtrim is the external voltage in V Vo is the desired output voltage For example, to program the output voltage of a DNL module to 3.3 Vdc, Vtrim is calculated as follows Vtrim := $$0.7 - (2.5475 \cdot 0.0667)$$ $$Vtrim = 0.530V$$ **Figure 24:** Circuit configuration for programming output voltage using an external resistor **Figure 25:** Circuit Configuration for programming output voltage using external voltage source # **FEATURE DESCRIPTIONS (CON.)** Table 1 provides Rtrim values required for some common output voltages, while Table 2 provides values of external voltage source, Vtrim, for the same common output voltages. By using a 1% tolerance trim resistor, set point tolerance of ±2% can be achieved as specified in the electrical specification. Table 1 | VO (V) | Rtrim (KΩ) | | | |--------|------------|--|--| | 0.7525 | Open | | | | 1.2 | 22.464 | | | | 1.5 | 13.047 | | | | 1.8 | 9.024 | | | | 2.5 | 5.009 | | | | 3.3 | 3.122 | | | | 5.0 | 1.472 | | | Table 2 | VO (V) | Vtrim (V) | | | |--------|-----------|--|--| | 0.7525 | Open | | | | 1.2 | 0.670 | | | | 1.5 | 0.650 | | | | 1.8 | 0.630 | | | | 2.5 | 0.583 | | | | 3.3 | 0.530 | | | | 5.0 | 0.4167 | | | The amount of power delivered by the module is the voltage at the output terminals multiplied by the output current. When using the trim feature, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module must not exceed the maximum rated power (Vo.set x lo.max \leq P max). ### **Voltage Margining** Output voltage margining can be implemented in the DNL modules by connecting a resistor, R margin-up, from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, Rmargin-down, from the Trim pin to the output pin for margining-down. Figure 26 shows the circuit configuration for output voltage margining. If unused, leave the trim pin unconnected. A calculation tool is available from the evaluation procedure which computes the values of R margin-up and Rmargin-down for a specific output voltage and margin percentage. Figure 26: Circuit configuration for output voltage margining ### Voltage Tracking The DNL family was designed for applications that have output voltage tracking requirements during power-up and power-down. The devices have a TRACK pin to implement three types of tracking method: sequential start-up, simultaneous and ratio-metric. TRACK simplifies the task of supply voltage tracking in a power system by enabling modules to track each other, or any external voltage, during power-up and power-down. By connecting multiple modules together, customers can get multiple modules to track their output voltages to the voltage applied on the TRACK pin. # FEATURE DESCRIPTIONS (CON.) The output voltage tracking feature (Figure 27 to Figure 29) is achieved according to the different external connections. If the tracking feature is not used, the TRACK pin of the module can be left unconnected or tied to Vin. For proper voltage tracking, input voltage of the tracking power module must be applied in advance, and the remote on/off pin has to be in turn-on status. (Negative logic: Tied to GND or unconnected. Positive logic: Tied to Vin or unconnected) Figure 27: Sequential start-up Figure 28: Simultaneous Figure 29: Ratio-metric ### **Sequential Start-up** Sequential start-up (Figure 27) is implemented by placing an On/Off control circuit between Vo_{PS1} and the On/Off pin of PS2. ### **Simultaneous** Simultaneous tracking (Figure 28) is implemented by using the TRACK pin. The objective is to minimize the voltage difference between the power supply outputs during power up and down. The simultaneous tracking can be accomplished by connecting Vo_{PS1} to the TRACK pin of PS2. Please note the voltage apply to TRACK pin needs to always higher than the Vo_{PS2} set point voltage. # FEATURE DESCRIPTIONS (CON.) #### Ratio-Metric Ratio—metric (Figure 29) is implemented by placing the voltage divider on the TRACK pin that comprises R1 and R2, to create a proportional voltage with Vo_{PS1} to the Track pin of PS2. For Ratio-Metric applications that need the outputs of PS1 and PS2 reach the regulation set point at the same time The following equation can be used to calculate the value of R1 and R2. The suggested value of R2 is $10k\Omega$. $$\frac{V_{o,PS2}}{V_{o,PS1}} = \frac{R_2}{R_1 + R_2}$$ ### THERMAL CONSIDERATIONS Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer. Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel. ### **Thermal Testing Setup** Delta's DC/DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted. The following figure shows the wind tunnel characterization setup. The power module is mounted on a test PWB and is vertically positioned within the wind tunnel. The height of this fan duct is constantly kept at 25.4mm (1"). ### **Thermal Derating** Heat can be removed by increasing airflow over the module. To enhance system reliability, the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected. Note: Wind Tunnel Test Setup Figure Dimensions are in millimeters and (Inches) Figure 30: Wind tunnel test setup ## THERMAL CURVES Figure 31: Temperature measurement location * The allowed maximum hot spot temperature is defined at 125 \mathcal{C} . Figure 32: DNL10S0A0S16 (Standard) Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=5.0V(Either Orientation) **Figure 33:** DNL10S0A0S16 (Standard)Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=3.3V(Either Orientation) DS_DNL10SMD_03052009 Figure 34: DNL10S0A0S16 (Standard) Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=1.8V(Either Orientation) Figure 35: DNL10S0A0S16 (Standard) Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=0.75V(Either Orientation) ### PICK AND PLACE LOCATION NOTES: ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES) TOLERANCES: X.Xmm±0.5mm(X.XX in.±0.02 in.) X.XXmm±0.25mm(X.XXX in.±0.010 in.) ### SURFACE-MOUNT TAPE & REEL # LEADED (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE Note: All temperature refers to assembly application board, measured on the land of assembly application board. # LEAD FREE (SAC) PROCESS RECOMMEND TEMP. PROFILE Note: All temperature refers to assembly application board, measured on the land of assembly application board. ## **MECHANICAL DRAWING** ### **SMD PACKAGE** ### SIP PACKAGE (OPTIONAL) SIDE VIEW BOTTOM VIEW BACK VIEW SIDE VIEW RECOMMENDED P.W.B PAD LAYOUT DIMENSIONS ARE IN MILLIMETERS AND (INCHES) TOLERANCES: X.Xmm±0.5mm(X.XX in.±0.02 in.) X.XXmm±0.25mm(X.XXX in.±0.010 in.) ### PART NUMBERING SYSTEM | 10 | S | 0A0 | S | 16 | N | F | D | | |--------------|-------------|------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | put Voltage | | | Package | Output | On/Off | | Option Code | | | Series | Outputs | voitage | туре | Current | logic | | - | | | 4 - 2.8~5.5V | S - Single | 0A0 - | R - SIP | 16 -16A | N- Negative | F- RoHS 6/6 | D - Standard Functions | | | 0 - 8.3~14V | | Programmable | S - SMD | 10 -10A | (Default) | (Lead Free) | | | | | | | | 06 - 6A | P- positive | | | | | | | | | | | | | | | 4 | out Voltage | out Voltage Numbers of Outputs - 2.8~5.5V S - Single | out Voltage Numbers of Output Voltage - 2.8~5.5V S - Single 0A0 - | out Voltage Numbers of Output Voltage Type - 2.8~5.5V S - Single 0A0 - R - SIP | out Voltage Numbers of Output Voltage Voltage Type Current - 2.8~5.5V S - Single OA0 - R - SIP 16 -16A Programmable S - SMD 10 -10A | Out Voltage Numbers of Output Voltage Outputs Output Voltage Output Current Output Current Output Solution Output Solution Output Solution Output Solution Output Current Output Current Output Current Output Current Output Current Output Current Output On/Off Iogic Output Output Current Output Solution Output On/Off Output On/Off Output Output Current Output On/Off Output Output On/Off Output Output Output On/Off Output O | Out Voltage Numbers of Output Voltage Outputs Output Voltage Output Current Curren | | ### **MODEL LIST** | Model Name | Packaging | Input
Voltage | Output Voltage | Output Current | On/Off logic | Efficiency
12Vin @ 100% load | | |-----------------|-----------|------------------|----------------|----------------|--------------|---------------------------------|--| | DNL10S0A0S16PFD | SMD | 8.3 ~ 14Vdc | 0.75 V~ 5.0Vdc | 16A | Positive | 92.0% | | | DNL10S0A0S16NFD | SMD | 8.3 ~ 14Vdc | 0.75 V~ 5.0Vdc | 16A | Negative | 92.0% | | | DNL10S0A0R16PFD | SIP | 8.3 ~ 14Vdc | 0.75 V~ 5.0Vdc | 16A | Positive | 92.0% | | | DNL10S0A0R16NFD | SIP | 8.3 ~ 14Vdc | 0.75 V~ 5.0Vdc | 16A | Negative | 92.0% | | ### CONTACT: www.delta.com.tw/dcdc **USA:** Telephone: East Coast: (888) 335 8201 West Coast: (888) 335 8208 Fax: (978) 656 3964 Email: DCDC@delta-corp.com urope: Phone: +41 31 998 53 11 Fax: +41 31 998 53 53 Email: DCDC@delta-es.com Asia & the rest of world: Telephone: +886 3 4526107 ext 6220 Fax: +886 3 4513485 Email: DCDC@delta.com.tw #### **WARRANTY** Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta. Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice. DS_DNL10SMD_03052009