N-Channel Depletion-Mode Vertical DMOS FETs

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- Telecom

General Description

The Supertex DN3135 is a low threshold depletion-mode (normally-on) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

$\begin{aligned} & \mathrm{BV}_{\mathrm{Dsx}} / \\ & \mathrm{BV}_{\mathrm{DGx}} \end{aligned}$	$\underset{\substack{\text { (max }(0) \\\left(\mathbf{R}^{\prime}\right)}}{ }$	$\begin{gathered} \mathrm{I}_{\text {Dss }} \\ (\mathrm{min}) \end{gathered}$	Package Options		
			TO-236AB ${ }^{1}$	TO-243AA ${ }^{2}$	
350V	35Ω	180mA	DN3135K1	DN3135N8	
			DN3135K1-G	DN3135N8-G	(Pb)

-G indicates package is RoHS compliant ('Green')
Notes: ${ }^{1}$ Same as SOT-23, ${ }^{2}$ Same as SOT-89.

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\mathrm{DSX}}$
Drain-to-gate voltage	$\mathrm{BV}_{\mathrm{DGX}}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature*	$300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.
*Distance of 1.6 mm from case for 10 seconds.

Pin Configurations

TO-236AB (Top View)

TO-243AA (top view)

Thermal Characteristics

Package	$\begin{gathered} \mathrm{I}_{\mathrm{D}} \\ \text { (continuous) }^{1} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{D}} \\ \text { (pulsed) } \end{gathered}$	Power Dissipation @T $\mathrm{A}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\theta_{j c}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{j a}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\mathrm{I}_{\mathrm{DR}}{ }^{1}$	$I_{\text {DRM }}$
TO-236AB	720 mA	300 mA	0.36W	200	350	72mA	300mA
TO-243AA	135 mA	300 mA	$1.3 W^{2}$	34	97^{2}	135mA	300 mA

Notes:

1. I_{D} (continuous) is limited by max rated T_{j}.
2. Mounted on FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$. Significant P_{D} increase possible on ceramic substrate.

Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSX }}$	Drain-to-source breakdown voltage	350	-	-	V	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {GS(OFF) }}$	Gate-to-source OFF voltage	-1.5	-	-3.5	V	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$
$\Delta \mathrm{V}_{\text {GS(OFF) }}$	Change in $\mathrm{V}_{\text {GS(OFF) }}$ with temperature	-	-	4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$
$\mathrm{I}_{\text {GSs }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\text {GS }}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {(IOFF) }}$	Drain-to-source leakage current	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=$ Max rating, $\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}$
		-	-	1.0	mA	$\begin{aligned} & V_{D S}=0.8 \mathrm{Max} \text { Rating, } \\ & \mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{l}_{\text {Dss }}$	Saturated drain-to-source current	180	-	-	mA	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source ON-state resistance	-	-	35	Ω	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	-	1.1	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
G_{FS}	Forward transconductance	140	-	-	mmho	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	60	120	pF	$\begin{aligned} & V_{\text {GS }}=-5.0 \mathrm{~V}, \\ & V_{\text {DS }}=25 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	6.0	15		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	1.0	10		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-ON delay time	-	-	10	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{v} \text { to }-10 \mathrm{~V} \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-OFF delay time	-	-	15		
t_{f}	Fall time	-	-	20		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=150 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	800	-	ns	$\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=150 \mathrm{~mA}$
Notes: 1.All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: 300μ s pulse, 2% duty cycle.) 2.All A.C. parameters sample tested.						

Switching Waveforms and Test Circuit

3-Lead TO-236AB (SOT-23) Package Outline (K1)

Side View
End View

3-Lead TO-243AA (SOT-89) Surface Mount Package (N8)

Top View
Side View

Bottom View

Notes:
All dimensions are in millimeters; all angles in degrees.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http//www.supertex.com.

