Integrated NPN Digital Transistor with Switching Diode Array

This new option of integrated devices is designed to replace a discrete solution of a single transistor with three switching diodes. BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT technology eliminates these individual components by integrating them into a single device, therefore integration of a single BRT with three switching diodes results in a significant reduction of both system cost and board space. This new device is offered in the SC-88 surface mount package.

Features

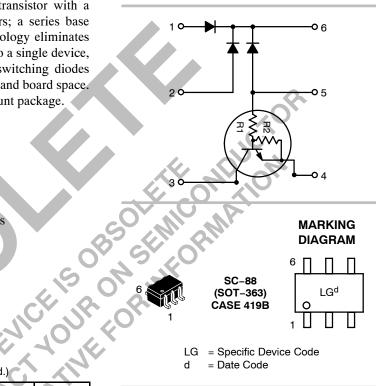
- Single SC-88 Surface Mount Package
- Moisture Sensitivity Level 1

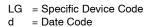
Benefits

- Integration of Six Discrete Components
- Integrated Solution Offers Cost and Space Savings
- Integrated Solution Improves System Reliability

Applications

- Wireless Phones
- Handheld Products
- Notebook Computers
- LCD Display Panels


MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)


Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	I _C	100	mAdc
Diode Reverse Voltage	V _R	80	Vdc
Diode Peak Reverse Voltage	V _{RM}	80	Vdc
Diode Forward Current	I _F	100	mAdc
Diode Peak Forward Current	I _{FM}	300	mAdc

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping†
NUS2501W6T1	SC-88	3000 Tape & Reel

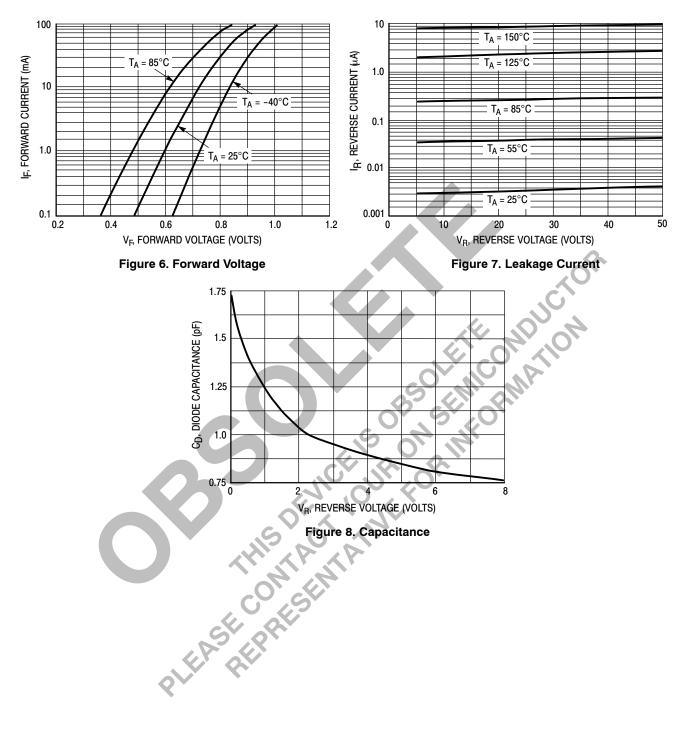
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2006 July, 2006 - Rev. 1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

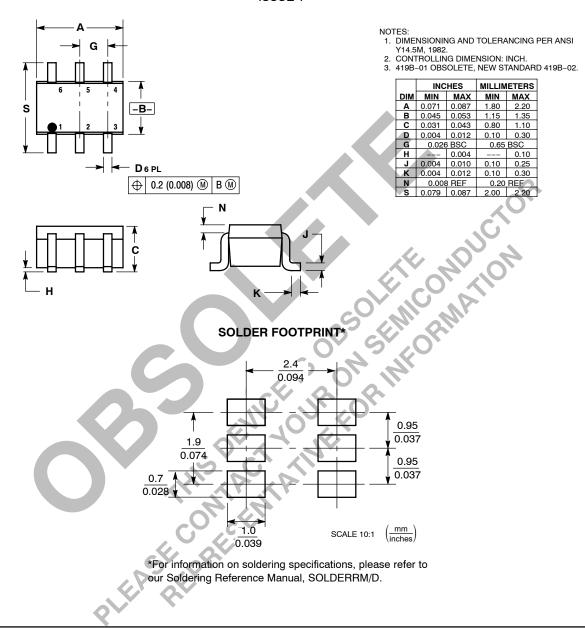
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Base Cutoff Current	I _{CBO}	$V_{CB} = 50 \text{ V}, \text{ I}_{E} = 0$	-	-	100	nAdc
Collector-Emitter Cutoff Current	I _{CEO}	$V_{CE} = 50 \text{ V}, \text{ I}_{B} = 0$	-	-	500	nAdc
Emitter-Base Cutoff Current	I _{EBO}	$V_{EB} = 6.0 \text{ V}, I_{C} = 0$	-	-	0.1	mAdc
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_{C} = 10 \ \mu A, \ I_{E} = 0$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 1)	V _{(BR)CEO}	$I_{\rm C}$ = 2.0 mA, $I_{\rm B}$ = 0	50	-	-	Vdc
Diode Reverse Breakdown Voltage	V _(BR)	I _R = 100 μA	80	-	-	Vdc
Diode Reverse Voltage Leakage Current	I _R	V _R = 70 V	-	-	0.1	μAdc
Diode Forward Voltage	V _F	l _F = 100 mA	-	-	1.2	Vdc
Diode Capacitance	CD	V _R = 6.0 V, f = 1.0 MHz	-	-	3.5	pF

ON CHARACTERISTICS (Note 1)


DC Current Gain	h _{FE}	V_{CE} = 10 V, I_{C} = 5.0 mA	80	140	Q .	-
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 10 mA, I _B = 0.3 mA	-		0.25	Vdc
Output Voltage(on)	V _{OL}	$V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 3.5 \text{ V},$ $\text{R}_{L} = 1.0 \text{ k}\Omega$	-	SG.	0.2	Vdc
Output Voltage(off)	V _{OH}	$\label{eq:VCC} \begin{array}{l} V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 0.5 \text{ V}, \\ R_{L} = 1.0 \text{ k}\Omega \end{array}$	4.9		-	Vdc
Input Resistor	R ₁	-	32.9	-	61.1	kΩ
Resistor Ratio	R ₁ /R ₂	G NI	0.8	1.0	1.2	-
Input Resistor Resistor Ratio	DEVIC	ATIVEFOR				

VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS 10 1000 $I_{\rm C}/I_{\rm B} = 10$ hFE, DC CURRENT GAIN (NORMALIZED) V_{CE} = 10 V T_A = 75 (25°C 100 T_A = −25°C 75°C 0.1 0.01 10 0 20 40 50 10 100 1 I_C, COLLECTOR CURRENT (mA) I_C, COLLECTOR CURRENT (mA) Figure 2. DC Current Gain Figure 1. $V_{CE(sat)}$ versus I_C 100 1 25°C f = 1 MHz 75°C I_E = 0 V T_A = -25°C 0.8 COLLECTOR CURRENT (mA) 10'0 T_A = 25°C Cob, CAPACITANCE (pF) 0.6 0.4 0.2 V₀ = 5 V 0 L 0.001 30 10 20 40 50 2 6 8 4 10 Ō V_B, REVERSE BIAS VOLTAGE (VOLTS) Vin, INPUT VOLTAGE (VOLTS) Figure 3. Output Capacitance Figure 4. Output Current versus Input Voltage 100 V_O = 0.2 V T_A = −25°C 25°Ċ V_{in}, INPUT VOLTAGE (VOLTS) 10 75°C 1 0.1 10 20 30 0 40 50 I_C, COLLECTOR CURRENT (mA)

TYPICAL TRANSISTOR ELECTRICAL CHARACTERISTICS


Figure 5. Input Voltage versus Output Current

TYPICAL DIODE ELECTRICAL CHARACTERISTICS

PACKAGE DIMENSIONS

SC-88 (SOT-363) CASE 419B-02 **ISSUE T**

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

For additional information, please contact your local Sales Representative

NUS2501W6/D