### مه کنی که مه

C/ CALIFORNIA

NE

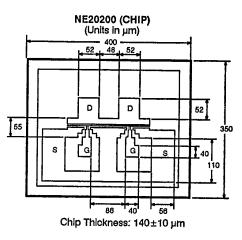
#### 15E D 🖬 6427414 0001590 5 📰

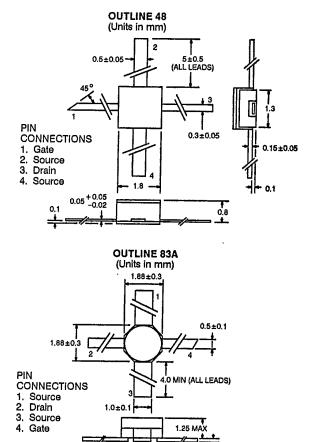
# ULTRA LOW NOISE K-BAND HETERO JUNCTION FET

# NE202 SERIES

### FEATURES

- LOW NOISE FIGURE: 1 dB TYP at f = 12 GHz (NE202XX) 1.2 dB TYP at f = 12 GHz (NE202XX-1.4) 1.8 dB TYP at f = 18 GHz (NE20248)
- HIGH ASSOCIATED GAIN:
   12 dB TYP at f = 12 GHz (NE20283A)
   9 dB TYP at f = 18 GHz (NE20248)
- n+ AIGaAs/UNDOPED GaAs HETERO-JUNCTION STRUCTURE
- GATE LENGTH: Lg = 0.3 microns
- GATE WIDTH: Wg = 200 microns
- PASSIVATION ON CHIP FOR HIGH RELIABILITY


### DESCRIPTION


The NE202 is a Hetero Junction FET that utilizes the hetero-Junction between Si-doped AIGaAs and undoped GaAs to create high mobility electrons. Its excellent low noise and high associated gain make it suitable for satellite communications and commercial systems. The NE202 is available in two versions, NE202XX for high performance low noise applications and the NE202XX-1.4 for gain stage applications. The device is available in chip and two Hermetic Packages.

| SYMBOLS | PARAMETERS              | UNITS | RATINGS     |
|---------|-------------------------|-------|-------------|
| Vos     | Drain to Source Voltage | V     | 4           |
| Vas     | Gate to Source Voltage  | V     | -3          |
| los     | Drain Current           | mA    | 60          |
| Рт      | Total Power Dissipation | mW    | 200         |
| Тсн     | Channel Temperature     | °C    | 175         |
| Tstg    | Storage Temperature     | °C    | -65 to +175 |
| la      | Gate Current            | μA    | 10          |

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

## **OUTLINE DIMENSIONS**





0.1 +0.07



T-31-25

### 🐎 N E C⁄ CALIFORNIA

- -

### NE202 SERIES

## ELECTRICAL CHARACTERISTICS (TA = 25°C)

| r         | PART NUMBER<br>PACKAGE OUTLINE                                                      |          | NE20200 <sup>1</sup><br>00 (CHIP) |      | NE20200-1.4 <sup>1</sup><br>00 (CHIP) |      | NE20248<br>48 |                  | NE2  | 20283<br>83A |     | NE2  | 0283/<br>83A |     |      |      |     |
|-----------|-------------------------------------------------------------------------------------|----------|-----------------------------------|------|---------------------------------------|------|---------------|------------------|------|--------------|-----|------|--------------|-----|------|------|-----|
| SYMBOLS   | PARAMETERS<br>AND CONDITIONS                                                        | UNITS    | MIN                               | ТҮР  | мах                                   | MIN  | түр           | мах              | MIN  | түр          | мах | MIN  | түр          | мах | MIN  | түр  | MAX |
| IDSX      | Drain to Source Leakage<br>Current at Vos = 4 V, Vos = −3 V                         | μA       |                                   |      | 100                                   |      |               | 100              |      |              | 100 |      |              | 100 |      |      | 100 |
| IDSS      | Saturated Drain Current at<br>Vos = 2 V, Vgs = 0                                    | mA       | 12                                | 30   | 60                                    | 12   | 30            | 60               | 12   | 30           | 60  | 12   | 30           | 60  | 12   | 30   | 60  |
| laso      | Icso Gate to Source Leakage Current<br>at Vos = -3 V, Ios = 0                       |          |                                   | 1    | 10                                    |      | 1             | 10               |      | 1            | 10  |      | 1            | 10  |      | 1    | 10  |
| Vgs (off) | Gate to Source Cutoff Voltage at Vos = 2 V, Ios = 100 $\mu$ A                       | v        | -0.3                              | -0.8 | -2                                    | -0.3 | -0.8          | -2               | -0.3 | -0.8         | -2  | -0.3 | -0.8         | -2  | -0.3 | -0.8 | -2  |
| gм        | Transconductance at<br>Vos = 2 V, Ios = 10 mA                                       | mS       | 30                                | 45   | 70                                    | 30   | 45            | 70               | 30   | 45           | 70  | 30   | 45           | 70  | 30   | 45   | 70  |
| NF        | Nolse Figure <sup>2</sup> at<br>Vbs = 2 V, lbs = 10 mA,<br>f = 12 GHz<br>f = 18 GHz | dB<br>dB |                                   | 1    | 1.2                                   |      | 1.2           | 1.4              |      | 1,6          | 1.8 |      | 1            | 1.2 |      | 1.2  | 1.4 |
| GA        | Associated Gain at<br>Vos = 2 V, los = 10 mA,<br>f = 12 GHz<br>f = 18 GHz           | dB<br>dB | 11                                | 12   |                                       | 10   | 11            |                  | 7.5  | 9            |     | 11   | 12           |     | 10   | 11   |     |
| PldB      | Power Output at 1 dB Gain<br>Compression, Vos = 2 V,<br>los = 10 mA, f = 12 GHz     | dBm      |                                   | 9    |                                       | -    | 9             |                  |      | 9            |     |      | 9            |     |      | 9    |     |
| Rтн       | Thermal Resistance<br>(Channel-to-Ambient)                                          | °C/W     |                                   |      | 260 <sup>3</sup>                      |      |               | 260 <sup>3</sup> |      |              |     |      |              | 700 |      |      | 700 |

Notes:

.

7

1. RF performance is determined by packaging and testing 10 chips per wafer; wafer rejection criteria for standard devices is 2 rejects for 10 samples.

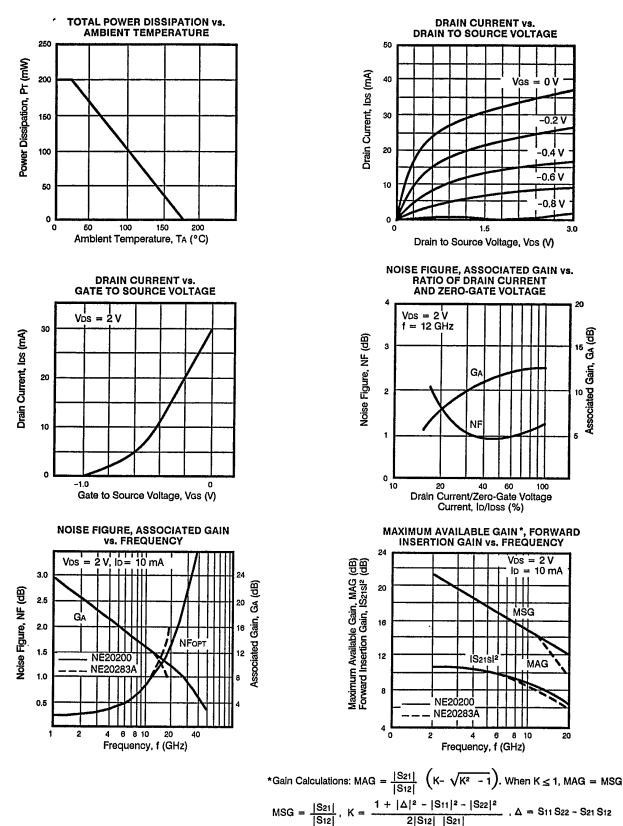
Typical values of noise figures are those obtained when 50% of the devices from a large number of lots were individually measured in a circuit with the input individually tuned to obtain the minimum value. Maximum values are criteria established on the production line as a "go-no-go" screening test with the fixture tuned for the "generic" type but not for each specimen.

3. RTH (channel to case) for chip mounted on copper heat sink.

#### **NE20200 TYPICAL NOISE PARAMETERS\***

| FREQ. | NFOPT | GA   | Го    | PT**  | Rn/50  |
|-------|-------|------|-------|-------|--------|
| (GHz) | (dB)  | (dB) | (MAG) | (ANG) | RII/30 |
| 1     | 0.30  | 23.7 | 0.82  | 8     | 0.75   |
| 2     | 0.30  | 20.5 | 0.80  | 15    | 0.60   |
| 4     | 0.37  | 17.2 | 0.74  | 31    | 0.55   |
| 6     | 0.52  | 15.3 | 0.70  | 44    | 0.50   |
| 8     | 0.68  | 13.9 | 0.66  | 58    | 0.45   |
| 10    | 0.84  | 12.9 | 0.62  | 72    | 0.42   |
| 12    | 1.00  | 12.0 | 0.58  | 86    | 0.40   |
| 14    | 1.15  | 11.3 | 0.54  | 98    | 0.38   |
| 16    | 1.31  | 10.7 | 0.51  | 110   | 0.36   |
| 18    | 1.47  | 10.1 | 0.48  | 122   | 0.34   |
| 20    | 1.63  | 9.6  | 0.46  | 132   | 0.32   |
| 22    | 1.82  | 9.1  | 0.44  | 141   | 0.30   |
| 24    | 2.03  | 8.6  | 0.42  | 148   | 0.27   |
| 26    | 2.22  | 8.0  | 0.42  | 156   | 0.25   |
| 28    | 2,43  | 7.5  | 0.42  | 161   | 0.22   |
| 30    | 2.70  | 6.9  | 0.41  | 167   | 0.20   |

#### **NE20283A TYPICAL NOISE PARAMETERS\***

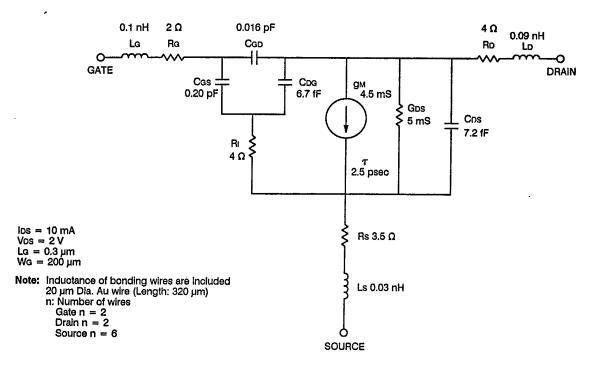

| FREQ. | NFOPT | GA   | Г     | OPT   | D-/50 |
|-------|-------|------|-------|-------|-------|
| (GHz) | (dB)  | (dB) | (MAG) | (ANG) | Rn/50 |
| 2     | 0.35  | 20.5 | 0.76  | 29    | 0.77  |
| 4     | 0.40  | 17.2 | 0.76  | 57    | 0.60  |
| 6     | 0.50  | 15.3 | 0.70  | 82    | 0.41  |
| 8     | 0.70  | 13.9 | 0.61  | 110   | 0,28  |
| 10    | 0.90  | 12.9 | 0.55  | 141   | 0.14  |
| 12    | 1.10  | 12   | 0.50  | 168   | 0.10  |
| 14    | 1.20  | 11   | 0.46  | -161  | 0.09  |
| 16    | 1.35  | 10   | 0.44  | -137  | 0.07  |
| 18    | 1.50  | 8.5  | 0.43  | -113  | 0.05  |

\*Vos = 2 V, los = 10 mA

 \*\* FOPT includes bond wires. Bond wires used during testing: Gate: 2 wires total, 1 per bond pad, 0.013" long each wire. Drain: 2 wires total, 1 per bond pad, 0.015" long each wire. Source: 4 wires total, 2 per side, 0.007" long each wire. Noise parameters from 1 to 18 GHz are measured. Noise parameters from 20 to 30 GHz are interpolated.

## 15E D ■ 6427414 0001592 9 ■ **T·31-25** NE202 SERIES

### TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C)






. . .

E C/ CALIFORNIA Ν **NE202 SERIES** 

### **NE20200 EQUIVALENT CIRCUIT**



### **RECOMMENDED DIE ATTACHING AND BONDING CONDITIONS FOR THE NE20200 AND** NE20200-1.4

| 1) | Die Attaching: |
|----|----------------|
|    | Solder         |
|    | Temperature    |
|    | Atmosphere     |

: AuSn 300 ±10°C : N2 Within 10 seconds

Bonding: 2)

Wire Method Temperature Atmosphere : N2 Within 5 minutes

: 20µm diameter gold : Thermocompression Bonding : 260 ±10°C

,

. .

. . . . . . .

<u>+ 90</u>°

+60°

.15 .20

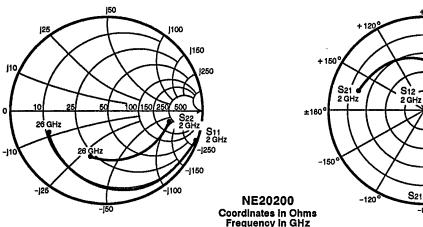
-60°

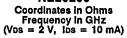
26 GHz 26 GHz

.05 .10

-90'

30°


0\*


S12

.25

-30°

# **TYPICAL COMMON SOURCE SCATTERING PARAMETERS**





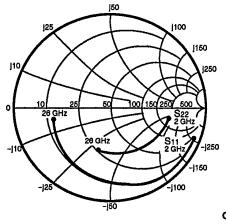
S-MAGN AND PHASE: = 2 V, IDS  $= 10 m \Delta$ Vi

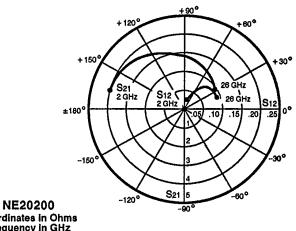
| VDS = 2V, IDS = 1 | 0 ma |      |      |     |     |    |     | <u> </u> |  |
|-------------------|------|------|------|-----|-----|----|-----|----------|--|
| FREQUENCY (GHz)   | 5    | S11  | S2   | 1   | St  | 2  | 5   | S22      |  |
| 2.00              | .99  | -19  | 3.47 | 164 | .03 | 77 | .67 | -11      |  |
| 3.00              | .97  | -28  | 3.40 | 156 | .04 | 73 | ,66 | -16      |  |
| 4.00              | .96  | -37  | 3.33 | 148 | .05 | 67 | .65 | -21      |  |
| 5.00              | .94  | -46  | 3.23 | 140 | .06 | 60 | .63 | -26      |  |
| 6.00              | .92  | -53  | 3.11 | 133 | .06 | 61 | .63 | -30      |  |
| 7.00              | .91  | -61  | 3.02 | 126 | .07 | 53 | .62 | -35      |  |
| 8.00 ,            | .89  | -69  | 2.96 | 119 | .08 | 49 | .60 | -40      |  |
| 9.00              | .86  | -76  | 2.84 | 113 | .08 | 47 | .59 | -45      |  |
| 10.00             | .85  | -83  | 2.79 | 107 | .09 | 44 | .58 | -50      |  |
| 11.00             | .83  | -90  | 2.73 | 100 | .10 | 38 | .58 | -56      |  |
| 12.00             | .81  | -97  | 2.67 | 94  | .10 | 34 | .57 | -61      |  |
| 13.00             | .80  | -103 | 2.60 | 88  | .11 | 30 | .57 | -66      |  |
| 14.00             | .78  | -110 | 2.52 | 82  | .11 | 25 | .56 | -70      |  |
| 15.00             | .77  | -115 | 2.45 | 76  | .11 | 23 | .55 | -74      |  |
| 16.00             | .76  | -120 | 2.38 | 71  | .11 | 20 | .55 | -76      |  |
| 17.00             | .74  | -125 | 2.31 | 66  | .10 | 18 | .54 | -79      |  |
| 18.00             | .73  | -129 | 2.24 | 61  | .11 | 17 | .53 | -80      |  |
| 19.00             | .70  | -133 | 2.13 | 58  | .10 | 17 | ,52 | -82      |  |
| 20.00             | .70  | -135 | 2.08 | 54  | .10 | 17 | .53 | -84      |  |
| 21.00             | .69  | -138 | 2.04 | 52  | .10 | 16 | .53 | -85      |  |
| 22.00             | .69  | -140 | 2.01 | 46  | .10 | 16 | ,53 | -87      |  |
| 23.00             | .69  | -145 | 1.90 | 42  | .09 | 15 | .52 | -90      |  |
| 24.00             | .67  | -149 | 1.85 | 39  | .10 | 16 | .52 | -96      |  |
| 25.00             | .64  | -154 | 1.84 | 36  | .10 | 15 | .50 | -104     |  |
| 26.00             | .62  | -160 | 1.77 | 33  | .10 | 15 | .51 | -107     |  |
|                   |      |      |      |     |     |    |     |          |  |

Note: Bond wires are not de-embedded. Gate: 2 wires total, 1 per bond pad, 0.013" long each wire.

| Drain: | 2 wires total, | 1 | per bond pad, 0.015" long each wire |  |
|--------|----------------|---|-------------------------------------|--|
|        |                |   |                                     |  |

Source: Wire: 4 wires total, 2 per side, 0.007" long each wire. 0.0008": diameter, gold.





100

,

.: \*

# TYPICAL COMMON SOURCE SCATTERING PARAMETERS





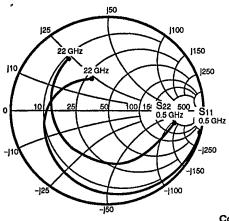
Coordinates in Ohms Frequency in GHz (VDs = 2 V, IDs = 20 mA)

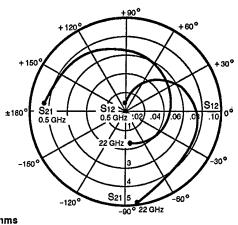
| QUENCY (GHz) |     | 511  | S2   | 1   | S   | 12 |     | S22  |
|--------------|-----|------|------|-----|-----|----|-----|------|
| 2.00         | .98 | -21  | 4.10 | 163 | .02 | 76 | .65 | -11  |
| 3.00         | .97 | -30  | 3.99 | 155 | .03 | 72 | .64 | -16  |
| 4.00         | .95 | -40  | 3,90 | 146 | .04 | 67 | .63 | -21  |
| 5,00         | .93 | -49  | 3.76 | 138 | .05 | 60 | .61 | -26  |
| 6.00         | .91 | ~56  | 3.59 | 131 | .06 | 62 | .61 | -29  |
| 7.00         | .89 | -65  | 3.47 | 125 | .07 | 54 | .60 | -34  |
| 8.00         | .87 | -73  | 3.37 | 118 | .07 | 50 | .58 | -40  |
| 9.00         | .84 | -80  | 3.23 | 111 | .07 | 47 | .56 | -44  |
| 10.00        | .83 | -87  | 3.16 | 105 | .08 | 45 | .56 | -49  |
| 11.00        | .81 | -94  | 3.07 | 98  | .09 | 39 | .56 | -55  |
| 12.00        | .79 | -101 | 2.99 | 92  | .09 | 35 | .55 | -60  |
| 13.00        | .78 | -108 | 2.89 | 86  | .09 | 31 | .54 | -65  |
| 14.00        | .76 | -114 | 2.79 | 80  | .10 | 28 | .53 | -69  |
| 15.00        | .75 | -120 | 2.70 | 75  | .09 | 25 | .53 | -73  |
| 16.00        | .73 | -125 | 2.62 | 70  | .10 | 24 | .53 | -75  |
| 17.00        | .73 | -129 | 2.54 | 66  | .09 | 23 | .53 | -78  |
| 18.00        | .70 | -134 | 2.46 | 61  | .09 | 21 | .51 | -78  |
| 19.00        | .68 | -137 | 2.33 | 57  | .09 | 21 | .51 | -80  |
| 20.00        | .68 | -139 | 2.27 | 54  | .09 | 24 | .51 | -82  |
| 21.00        | .67 | -142 | 2.22 | 51  | .09 | 22 | .52 | -83  |
| 22.00        | .67 | -144 | 2.19 | 46  | .09 | 23 | .52 | -85  |
| 23.00        | .67 | -149 | 2.06 | 42  | .09 | 24 | .51 | -88  |
| 24.00        | .64 | -153 | 2.03 | 39  | .09 | 22 | .51 | -94  |
| 25.00        | .63 | -158 | 2.00 | 36  | .10 | 22 | .49 | -102 |
| 26.00        | .61 | -164 | 1.92 | 33  | .10 | 23 | .50 | -105 |

 Note:
 Bond wires are not de-embedded.

 Gate:
 2 wires total, 1 per bond pad, 0.013" long each wire.

 Drain:
 2 wires total, 1 per bond pad, 0.015" long each wire.


 Source:
 4 wires total, 2 per side, 0.007" long each wire.


 Wire:
 0.0008": cliameter, gold.

S-MAGN AND PHASE:

L

# **TYPICAL COMMON SOURCE SCATTERING PARAMETERS**



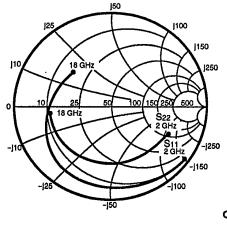


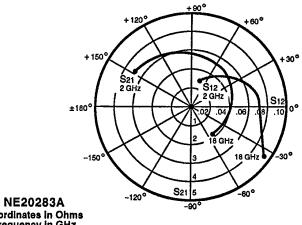
,

NE20248 Coordinates in Ohms Frequency in GHz (Vos = 2 V, los = 10 mA)

| VDS = 2 V, IDS = 1 |      |      |      |     |      |     |     |      |  |
|--------------------|------|------|------|-----|------|-----|-----|------|--|
| FREQUENCY (GHz)    |      | S11  | S    | 521 | Sı   | 2   | S   | 522  |  |
| .50                | 1.00 | -8   | 4.16 | 173 | .007 | 85  | .71 | -10  |  |
| 1.00               | 1.00 | -15  | 4.16 | 164 | .013 | 76  | .74 | -17  |  |
| 1.50               | .99  | -23  | 4.01 | 156 | .019 | 71  | .68 | -19  |  |
| 2.00               | .98  | -30  | 3.95 | 150 | .025 | 69  | .64 | -23  |  |
| 2.50               | ,97  | -37  | 3.95 | 143 | .031 | 60  | .63 | -31  |  |
| 3.00               | .96  | -45  | 3.86 | 135 | .036 | 54  | .63 | -38  |  |
| 3.50               | .95  | -52  | 3.77 | 128 | .040 | 50  | .63 | -41  |  |
| 4.00               | ,94  | -59  | 3.73 | 122 | .045 | 46  | .60 | -45  |  |
| 4.50               | .92  | -67  | 3.68 | 115 | .050 | 40  | .58 | -52  |  |
| 5.00               | .90  | -74  | 3,59 | 108 | .054 | 35  | .58 | -60  |  |
| 5.50               | .89  | -80  | 3.51 | 101 | .058 | 30  | .58 | -65  |  |
| 6.00               | .87  | -87  | 3,43 | 95  | .061 | 28  | .57 | -69  |  |
| 6,50               | .85  | -94  | 3.35 | 88  | .064 | 20  | .55 | -76  |  |
| 7.00               | .84  | -100 | 3.25 | 81  | .066 | 15  | .55 | -83  |  |
| 7.50               | .83  | -105 | 3.15 | 76  | .067 | 11  | .55 | -88  |  |
| 8.00               | .81  | -111 | 3.08 | 70  | .069 | 8   | .55 | -91  |  |
| 8.50               | .80  | -116 | 3.01 | 64  | .070 | 4   | .53 | -97  |  |
| 9.00               | .79  | -121 | 2.83 | 58  | .072 | 1   | .52 | -103 |  |
| 9.50               | .78  | -126 | 2.86 | 53  | .074 | -3  | .53 | -109 |  |
| 10.00              | .77  | -131 | 2.81 | 47  | .075 | -6  | .53 | -114 |  |
| 10.50              | .75  | -136 | 2.75 | 41  | .077 | -10 | .52 | -120 |  |
| 11.00              | .74  | ~141 | 2.68 | 36  | .078 | -14 | .52 | -127 |  |
| 11.50              | .72  | -145 | 2.61 | 30  | .078 | -18 | .53 | -133 |  |
| 12.00              | .71  | -150 | 2.56 | 24  | .079 | -21 | .54 | -138 |  |
| 12.50              | .70  | -154 | 2.50 | 19  | .079 | -25 | .54 | -143 |  |
| 13.00              | .68  | -159 | 2.44 | 13  | .079 | -28 | .54 | -148 |  |
| 13.50              | .67  | -163 | 2.38 | 8   | .079 | -31 | .54 | -154 |  |
| 14.00              | .66  | -167 | 2.33 | 3   | .079 | -34 | .55 | -159 |  |
| 14.50              | .65  | -171 | 2.28 | -2  | .080 | -37 | .56 | -163 |  |
| 15.00              | .64  | -175 | 2.24 | -7  | .080 | -39 | .56 | -169 |  |
| 15.50              | .63  | -179 | 2.21 | -13 | .081 | -42 | .57 | -174 |  |
| 16.00              | .61  | 177  | 2,17 | -18 | .083 | -45 | .58 | -179 |  |
| 16.50              | .60  | 173  | 2.13 | -23 | .083 | -49 | .60 | 176  |  |
| 17.00              | .58  | 169  | 2.09 | -28 | .084 | -52 | .61 | 172  |  |
| 17.50              | .57  | 164  | 2.06 | -34 | .085 | -55 | .62 | 167  |  |
| 18.00              | .55  | 160  | 2.02 | -39 | .085 | -59 | .62 | 164  |  |
| 18.50              | .54  | 157  | 1.96 | -44 | .084 | -62 | .62 | 161  |  |
| 19.00              | .52  | 152  | 1.92 | -50 | .086 | -64 | .63 | 158  |  |
| 19.50              | .51  | 149  | 1.88 | -54 | .088 | -68 | .63 | 154  |  |
| 20.00              | .48  | 144  | 1.85 | -60 | .087 | -72 | .62 | 150  |  |
| 20.50              | .46  | 141  | 1.82 | -65 | .087 | -74 | .62 | 147  |  |
| 21.00              | .45  | 137  | 1.78 | -70 | .088 | -76 | .61 | 143  |  |
| 21.50              | .44  | 134  | 1.72 | -74 | .087 | -79 | .63 | 144  |  |
| 22.00              | .38  | 118  | 1.72 | -81 | .101 | -83 | .68 | 127  |  |

3-79


Downloaded from Elcodis.com electronic components distributor


\*

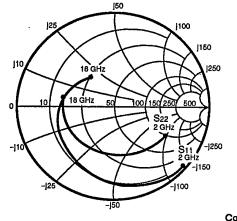
Ĺ. .....

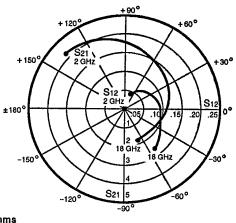
.

# **TYPICAL COMMON SOURCE SCATTERING PARAMETERS**






Coordinates in Ohms Frequency in GHz (Vos = 2 V, los = 10 mA)


| S-MAGN AND PHAS<br>VDS = 2 V, IDS = 1 |     |      |      |     |     |     |     |      |  |
|---------------------------------------|-----|------|------|-----|-----|-----|-----|------|--|
| FREQUENCY (GHz)                       |     | 511  | S    | 521 | S   | 12  |     | S22  |  |
| 2.00                                  | .98 | -34  | 3.55 | 148 | .03 | 68  | .65 | -25  |  |
| 3.00                                  | .94 | -50  | 3.39 | 131 | .04 | 55  | .64 | -37  |  |
| 4.00                                  | .91 | -65  | 3.22 | 116 | .05 | 45  | .63 | -48  |  |
| 5.00                                  | .88 | -81  | 3.09 | 102 | .06 | 34  | .62 | -60  |  |
| 6.00                                  | .84 | -95  | 2.91 | 87  | .06 | 25  | .61 | -71  |  |
| 7.00                                  | .82 | -109 | 2.83 | 75  | .07 | 18  | .61 | -81  |  |
| 8.00                                  | .78 | -120 | 2.63 | 62  | .07 | 11  | .60 | -91  |  |
| 9,00                                  | .76 | -132 | 2.52 | 50  | .07 | 5   | .61 | -100 |  |
| 10.00                                 | .73 | -144 | 2.36 | 40  | .07 | 1   | .61 | -109 |  |
| 11.00                                 | .71 | -153 | 2.22 | 29  | .07 | -3  | .61 | -116 |  |
| 12.00                                 | .69 | -164 | 2,22 | 18  | .07 | -7  | .62 | -124 |  |
| 13.00                                 | .66 | -174 | 2.24 | 6   | .08 | -12 | .62 | -131 |  |
| 14.00                                 | .62 | 176  | 2.09 | -6  | .07 | -16 | .61 | -138 |  |
| 15.00                                 | .60 | 166  | 2.01 | -18 | .08 | -18 | .61 | -146 |  |
| 16.00                                 | .58 | 156  | 2.00 | -24 | .08 | -24 | .62 | -154 |  |
| 17.00                                 | .55 | 145  | 2.00 | -37 | .08 | -37 | .63 | -162 |  |
| 18.00                                 | .51 | 133  | 2.00 | -49 | .09 | -49 | .63 | -170 |  |

,

. •

# **TYPICAL COMMON SOURCE SCATTERING PARAMETERS**





NE20283A Coordinates In Ohms Frequency in GHz (Vos = 2 V, Ios = 20 mA)

| S-MAGN AND PHAS |     |      |      |     |     |     |     |      |  |
|-----------------|-----|------|------|-----|-----|-----|-----|------|--|
| FREQUENCY (GHz) | S11 |      | S21  |     | S   | S12 |     | S22  |  |
| 2.00            | .95 | -40  | 4.31 | 140 | .04 | 62  | .61 | -32  |  |
| 3.00            | .90 | -57  | 3.97 | 124 | .06 | 50  | .59 | -46  |  |
| 4.00            | .86 | -75  | 3,77 | 106 | .07 | 38  | .57 | -60  |  |
| 5.00            | .79 | -91  | 3.43 | 91  | .08 | 27  | .54 | -74  |  |
| 6.00            | .75 | -105 | 3.21 | 75  | .09 | 18  | .52 | -86  |  |
| 7.00            | .71 | -119 | 2.98 | 62  | .09 | 10  | .52 | -97  |  |
| 8.00            | .68 | -130 | 2.77 | 50  | .09 | 4   | .51 | -106 |  |
| 9.00            | .65 | -141 | 2.59 | 37  | .09 | -3  | .52 | -115 |  |
| 10.00           | .63 | -152 | 2.43 | 26  | .09 | -6  | .52 | -125 |  |
| 11.00           | .61 | -161 | 2.28 | 15  | .09 | -12 | .52 | -133 |  |
| 12.00           | .57 | -172 | 2.22 | 2   | .10 | -19 | .52 | -141 |  |
| 13.00           | .54 | 180  | 2,12 | -8  | .10 | -22 | .52 | -148 |  |
| 14.00           | .50 | 171  | 2.03 | -19 | .10 | -27 | .51 | -155 |  |
| 15.00           | .48 | 161  | 2.00 | -32 | .11 | -33 | .51 | -163 |  |
| 16.00           | .45 | 150  | 1.98 | -40 | .12 | -36 | .51 | -172 |  |
| 17.00           | .43 | 139  | 1.95 | -54 | .12 | -45 | .51 | 179  |  |
| 18.00           | .39 | 127  | 1.95 | -66 | .13 | -53 | .51 | 169  |  |

