RENESAS

3SK317

Silicon N-Channel Dual Gate MOS FET UHF / VHF RF Amplifier

> REJ03G1247-0200 (Previous: ADE-208-778) Rev.2.00 Aug. 10, 2005

Features

- Low noise characteristics; (NF = 1.0 dB typ. at f = 200 MHz)
- High power gain characteristics; ٠ (PG = 27.6 dB typ. at f = 200 MHz)

Outline

RENESAS Package code: PTSP0004ZA-A (Package name: CMPAK-4) 1. Source 2. Gate1

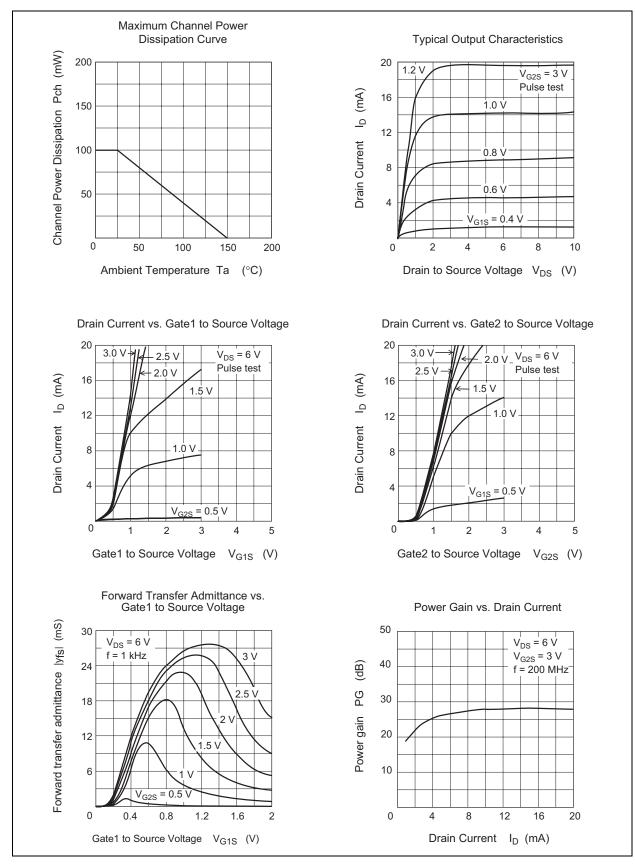
3. Gate2 4. Drain

Note: Marking is "ZR-".

Absolute Maximum Ratings

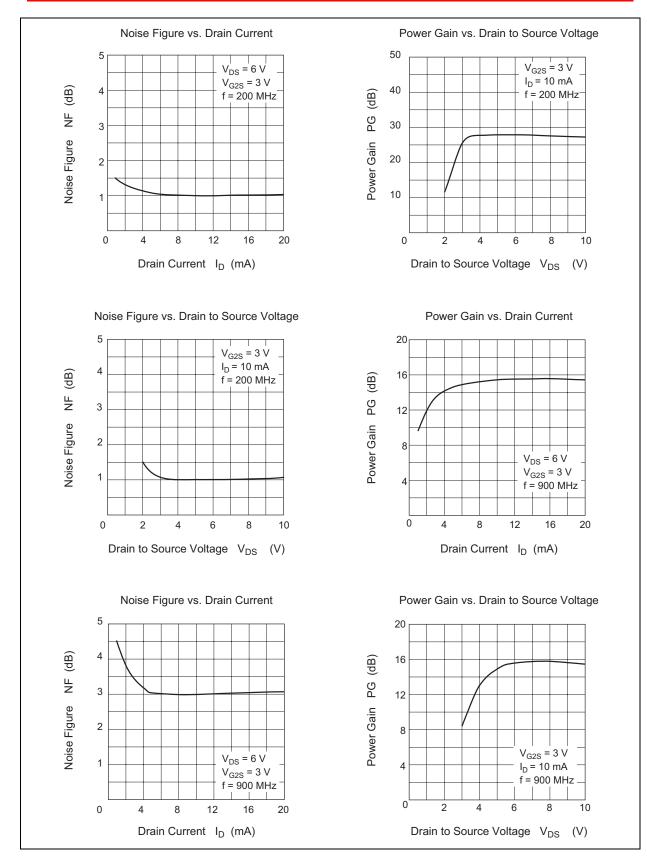
 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DS}	14	V
Gate1 to source voltage	V _{G1S}	±8	V
Gate2 to source voltage	V _{G2S}	±8	V
Drain current	I _D	25	mA
Channel power dissipation	Pch	100	mW
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C


Electrical Characteristics

						$(Ta = 25^{\circ}C)$
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V _{(BR)DSS}	14		—	V	$I_D=200~\mu A$, $V_{G1S}=V_{G2S}=-3~V$
Gate1 to source breakdown voltage	V _{(BR)G1SS}	±8		—	V	$I_{G1} = \pm 10 \ \mu A, \ V_{G2S} = V_{DS} = 0$
Gate2 to source breakdown voltage	V _{(BR)G2SS}	±8		—	V	$I_{G2} = \pm 10 \ \mu A, \ V_{G1S} = V_{DS} = 0$
Gate1 to source cutoff current	I _{G1SS}	_	—	±100	nA	$V_{G1S} = \pm 6 V, V_{G2S} = V_{DS} = 0$
Gate2 to source cutoff current	I _{G2SS}	_	—	±100	nA	$V_{G2S} = \pm 6 V, V_{G1S} = V_{DS} = 0$
Gate1 to source cutoff voltage	V _{G1S(off)}	0	0.2	1	V	$V_{DS} = 10 \text{ V}, V_{G2S} = 3 \text{ V},$ $I_{D} = 100 \mu\text{A}$
Gate2 to source cutoff voltage	V _{G2S(off)}	0	0.3	1	V	$V_{DS} = 10 \text{ V}, V_{G1S} = 3 \text{ V},$ $I_D = 100 \mu\text{A}$
Drain current	I _{DS(op)}	4	8	14	mA	$V_{DS} = 6 V, V_{G1S} = 0.75 V,$ $V_{G2S} = 3 V$
Forward transfer admittance	y _{fs}	20	25	—	mS	$V_{DS} = 6 V, V_{G2S} = 3 V$ $I_{D} = 10 mA, f = 1 kHz$
Input capacitance	Ciss	2.4	3.1	3.5	pF	$V_{DS} = 6 V, V_{G2S} = 3 V,$
Output capacitance	Coss	0.8	1.1	1.4	pF	I _D = 10 mA, f = 1 MHz
Reverse transfer capacitance	Crss	_	0.021	0.04	pF	
Power gain	PG	24	27.6	—	dB	$V_{DS} = 6 V, V_{G2S} = 3 V,$
Noise figure	NF		1.0	1.5	dB	I _D = 10 mA , f = 200 MHz
Power gain	PG	12	15.6	—	dB	$V_{DS} = 6 V, V_{G2S} = 3 V,$
Noise figure	NF	_	3	4	dB	I _D = 10 mA, f = 900 MHz
Noise figure	NF		2.7	3.5	dB	$V_{DS} = 6 V, V_{G2S} = 3 V$ $I_{D} = 10 mA, f = 60 MHz$

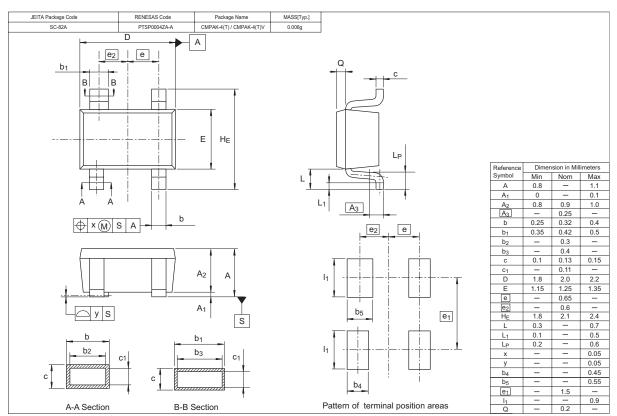
Rev.2.00 Aug 10, 2005, page 2 of 6


RENESAS

Main Characteristics

Rev.2.00 Aug 10, 2005, page 3 of 6

RENESAS



RENESAS

Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
3SK317ZR-TL-E	3000	φ178 mm Reel, 8 mm Emboss Taping

Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting product data, diagrams, charts, programs, and algorithms, please b

- product contained nerein for any specific purposes, such as apparatus or systems for transportation, vendation, research, acrospace, re

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.

Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com