PRELIMINARY

CGH09120F 120 W, UHF - 2.5 GHz, GaN HEMT for WCDMA, LTE, MC-GSM

Cree's CGH09120F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH09120F ideal for MC-GSM, WCDMA and LTE amplifier applications. The transistor is supplied in a ceramic/metal flange package.

Package Type: 440095 PN: CGH09120F

Typical Performance Over 800-950 MHz ($T_c = 25^{\circ}$ c) of Demonstration Amplifier

Parameter	800 MHz	850 MHz	900 MHz	950 MHz	Units
Gain @ 43 dBm	19.2	21.0	21.6	21.6	dB
ACLR @ 43 dBm	-40.5	-40.5	-39.0	-36.5	dBc
Drain Efficiency @ 43 dBm	31.0	33.7	36.6	39.3	%

Note:

Measured in the CGH09120F-TB amplifier circuit, under WCDMA 3GPP test model 1, 64 DPCH, 67% clipping, PAR = $8.81 \text{ dB} \oplus 0.01 \text{ \%}$ Probability on CCDF.

Features

- UHF 2.5 GHz Operation
- 21 dB Gain
- -38 dBc ACLR at 20 W P_{AVE}
- 35 % Efficiency at 20 W P_{AVE}
- High Degree of DPD Correction Can be Applied

Large Signal Models Available for SiC & GaN

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DSS}	84	Volts
Gate-to-Source Voltage	V _{gs}	-10, +2	Volts
Power Dissipation	P _{DISS}	56	Watts
Storage Temperature	T _{stg}	-55, +150	°C
Operating Junction Temperature	Т,	225	°C
Maximum Forward Gate Current	I _{gmax}	30	mA
Soldering Temperature ¹	Τ _s	245	°C
Screw Torque	τ	80	in-oz
Thermal Resistance, Junction to Case ²	$R_{_{ ext{ hetaJC}}}$	1.7	°C/W
Case Operating Temperature ²	T _c	-40, +105	°C

Note:

¹ Refer to the Application Note on soldering at <u>www.cree.com/products/wireless_appnotes.asp</u>

² Measured for the CGH09120F at $P_{DISS} = 56 \text{ W}$

Electrical Characteristics ($T_c = 25^{\circ}C$)

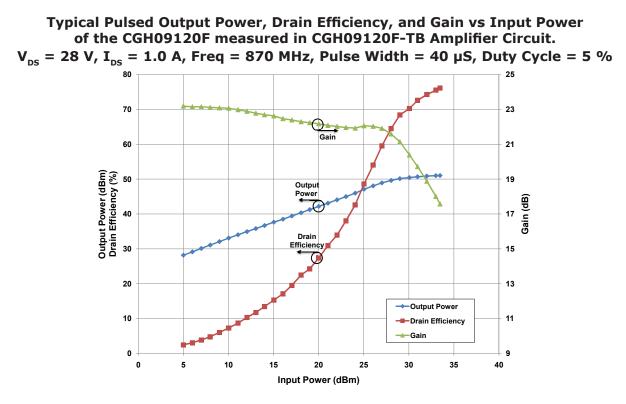
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.3	-2.3	VDC	$V_{_{\rm DS}}$ = 10 V, $I_{_{\rm D}}$ = 28.8 mA	
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-3.0	-	VDC	$V_{_{\rm DS}}$ = 28 V, $I_{_{\rm D}}$ = 1.0 A	
Saturated Drain Current ²	I _{ds}	23.2	28.0	-	А	$V_{_{DS}}$ = 6.0 V, $V_{_{GS}}$ = 2.0 V	
Drain-Source Breakdown Voltage	V _{BR}	84	100	-	VDC	$V_{_{GS}}$ = -8 V, $I_{_{D}}$ = 28.8 mA	
RF Characteristics ⁵ ($T_c = 25^{\circ}C, F_0$	= 870 MHz u	Inless otherw	vise noted)				
Saturated Output Power ^{3,4}	P _{SAT}	-	120	-	W	$V_{\mbox{\tiny DD}}$ = 28 V, $I_{\mbox{\tiny DQ}}$ = 1.0 A,	
Pulsed Drain Efficiency ³	η	-	75	-	%	V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{OUT} = P_{SAT}	
Modulated Gain ⁶	G _{ss}	-	21	-	dB	$V_{_{\rm DD}}$ = 28 V, $I_{_{\rm DQ}}$ = 1.0 A, $P_{_{\rm OUT}}$ = 43 dBm	
WCDMA Linearity ⁶	ACLR	-	-38	-	dBc	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.0 A, $P_{_{OUT}}$ = 43 dBm	
Modulated Drain Efficiency ⁶	η	-	35	-	%	$\rm V_{\tiny DD}$ = 28 V, $\rm I_{\tiny DQ}$ = 1.0 A, $\rm P_{\tiny OUT}$ = 43 dBm	
Dynamic Characteristics	Dynamic Characteristics						
Input Capacitance	C _{GS}	-	33	-	pF	$V_{_{\rm DS}}$ = 28 V, $V_{_{\rm gs}}$ = -8 V, f = 1 MHz	
Output Capacitance	C _{DS}	-	10	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz	
Feedback Capacitance	C _{GD}	-	3.0	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz	

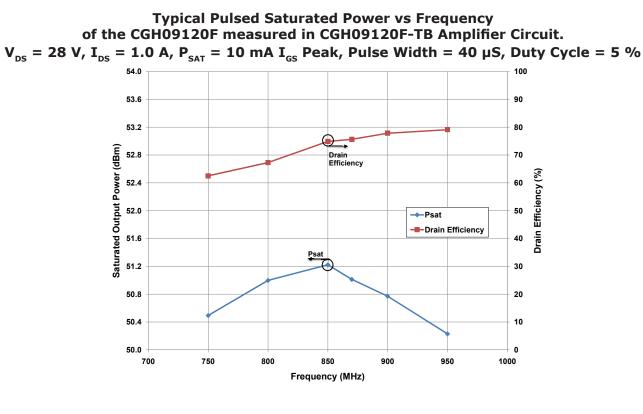
Notes:

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

- $^{\rm 3}$ Pulse Width = 40 $\mu S,$ Duty Cycle = 5 %.
- 4 $\rm P_{_{SAT}}$ is defined as $\rm I_{_G}$ = 10 mA peak.
- ⁵ Measured in CGH09120F-TB.

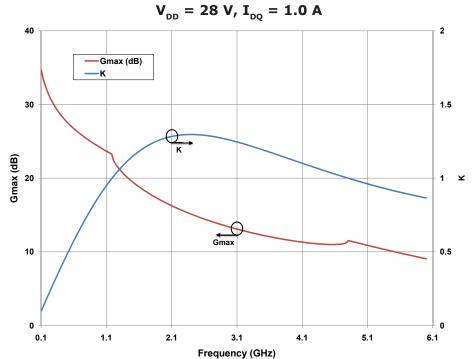

⁶ Single Carrier WCDMA, 3GPP Test Model 1, 64 DPCH, 67 % Clipping, PAR = 8.81 dB @ 0.01 % Probability on CCDF.

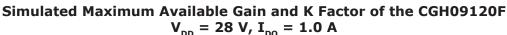

Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Typical Pulse Performance

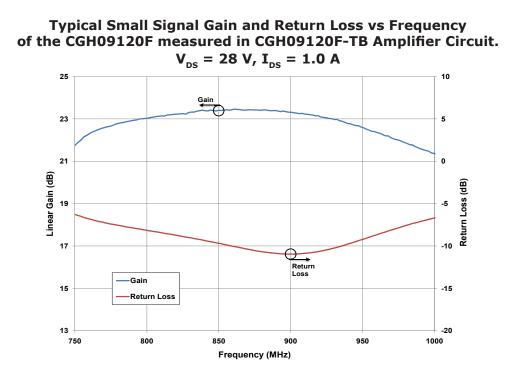
Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless


CGH09120F Rev 0.2 Preliminary

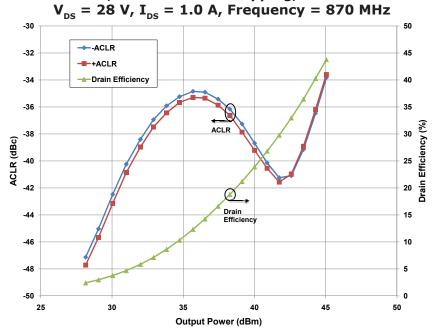
m electronic components distributor

Typical Performance



Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

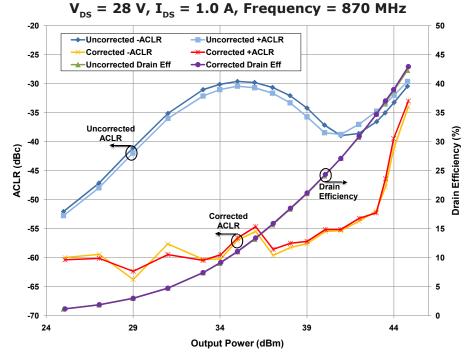
Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

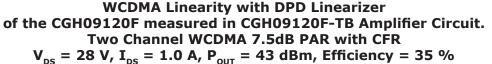


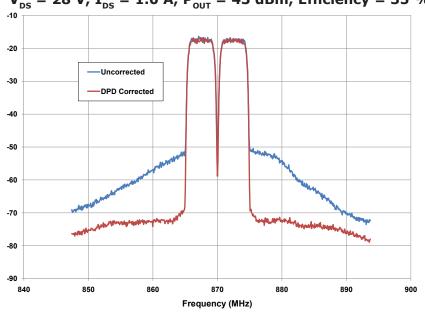
Typical Linear Performance

Typical WCDMA Performance

Typical WCDMA Characteristics ACLR and Drain Efficiency vs Output Power of the CGH09120F measured in CGH09120F-TB Amplifier Circuit. 3GPP Test Model 1, 64 DPCH 67 % Clipping, 8.81 dB PAR @ 0.01 %

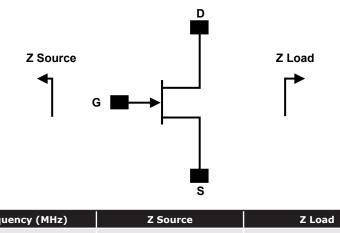

Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless



Typical WCDMA Digital Pre-Distortion (DPD) Performance

WCDMA Characteristics with and without DPD Correction ACLR and Drain Efficiency vs Output Power of the CGH09120F measured in CGH09120F-TB Amplifier Circuit. Two Channel WCDMA 7.5dB PAR with CFR



Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Source and Load Impedances

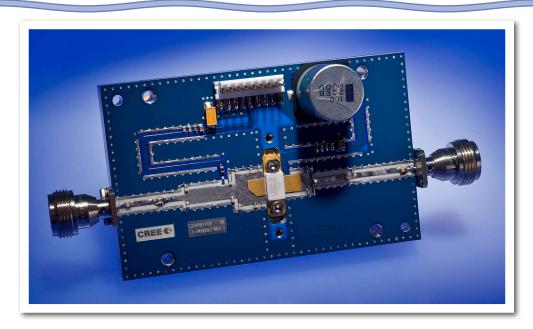
Frequency (MHz)	Z Source	Z Load		
700	0.75 - j 0.58	5.59 - j 2.12		
750	0.84 - j 0.18	4.97 - j 1.25		
800	0.90 + j 0.19	4.68 - j 0.37		
850	0.95 + j 0.59	4.59 + j 0.45		
900	1.02 + j 1.03	4.67 + j 1.19		
950	1.17 + j 1.53	4.90 + j 1.82		
1000	1.53 + j 2.10	5.28 + j 2.31		

Note¹ $V_{_{\rm DD}}$ = 28V, $I_{_{\rm DQ}}$ = 1.0 A in the 440095 package.

Note² Impedances are extracted from CGH09120F-TB demonstration circuit and are not source and load pull data derived from transistor.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

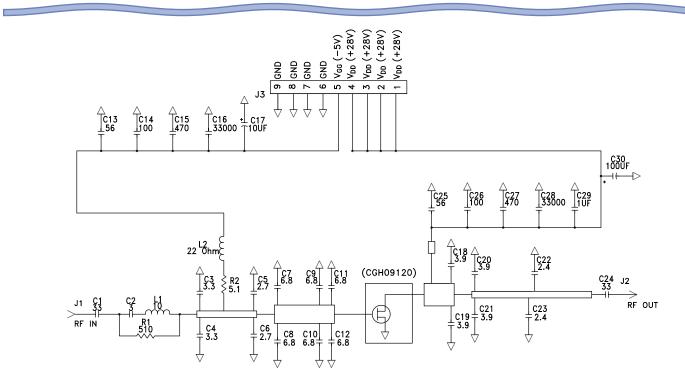
Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.



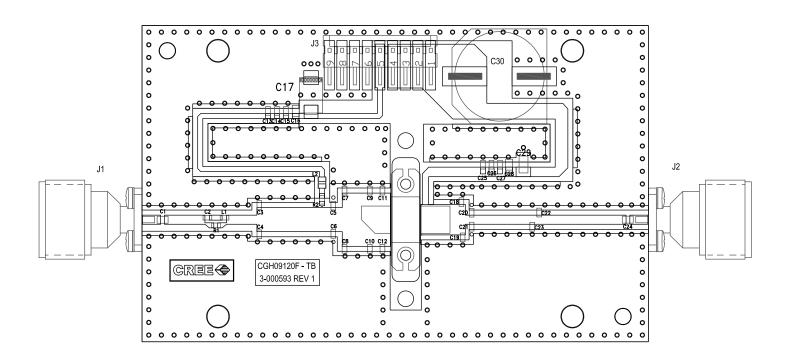
CGH09120F-TB Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 511 OHMS	1
R2	RES, 1/16W, 0603, 1%, 5.1 OHMS	1
C1, C24	CAP, 33 pF +/- 5%, 250V, 0805, ATC 600F	2
C2	CAP, 3.0 pF, +/- 0.1pF, 0603, ATC600S	1
C3, C4	CAP, 3.3 pF, +/- 0.1pF, 0603, ATC600S	2
C5, C6	CAP, 2.7 pF, +/- 0.1pF, 0603, ATC600S	2
C7, C8, C9, C10, C11, C12	CAP, 6.8pF, +/- 0.25 pF, 0603, ATC600S	6
C13, C25	CAP, 56 pF +/- 5%, 0603 , ATC600S	2
C14, C26	CAP, 100 pF, +/-5%, 0603, ATC600S	2
C15, C27	CAP, 470 pF, 5%, 100V, 0603, X7R	2
C16, C28	CAP, 33000 pF, 0805, 100V, X7R	2
C17	CAP, 10 uF, 16V, TANTALUM	1
C18, C19, C20, C21	CAP, 3.9 pF, +/- 0.1pF, 0603, ATC600S	4
C22, C23	CAP, 2.4PF, +/-0.1 pF, 0603, ATC600S	2
C29	CAP, 1.0 uF, +/-10%, 1210, 100V, X7R	1
C30	CAP 100 uF, 160V, ELECTROLYTIC	1
L1	INDUCTOR, CHIP, 10nH, 0603, SMT	1
L2	FERRITE, 22 OHM, 0805	1
J1, J2	CONN, N-Type, Female, 0.500 SMA Flange	2
J3	CONN, Header, RT> PLZ, 0.1 CEN, LK, 9 POS	1
-	PCB, RO4003, Er = 3.38, h = 32 mil	1
-	CGH09120F	1

CGH09120F-TB Demonstration Amplifier Circuit


Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless


CGH09120F Rev 0.2 Preliminary

CGH09120F-TB Demonstration Amplifier Circuit Schematic

CGH09120F-TB Demonstration Amplifier Circuit Outline

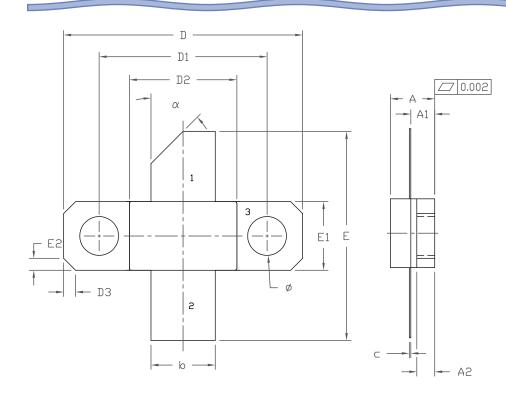
Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGH09120F Rev 0.2 Preliminary

Typical Package S-Parameters for CGH09120F (Small Signal, V_{DS} = 28 V, I_{DQ} = 1.0 A, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.9597	-179.25	3.86	80.29	0.0069	11.86	0.841	179.79
600 MHz	0.9599	179.78	3.22	77.99	0.0070	13.83	0.842	179.39
700 MHz	0.9600	178.96	2.76	75.78	0.0071	15.85	0.842	179.03
800 MHz	0.9601	178.22	2.42	73.61	0.0073	17.89	0.843	178.69
900 MHz	0.9601	177.54	2.15	71.49	0.0074	19.91	0.844	178.36
1.0 GHz	0.9600	176.90	1.94	69.41	0.0076	21.92	0.845	178.03
1.1 GHz	0.9600	176.28	1.77	67.35	0.0077	23.89	0.846	177.71
1.2 GHz	0.9598	175.68	1.62	65.31	0.0079	25.81	0.846	177.38
1.3 GHz	0.9597	175.10	1.50	63.30	0.0082	27.68	0.847	177.06
1.4 GHz	0.9595	174.52	1.40	61.31	0.0084	29.49	0.848	176.72
1.5 GHz	0.9593	173.95	1.31	59.35	0.0087	31.23	0.849	176.38
1.6 GHz	0.9591	173.37	1.23	57.40	0.0090	32.89	0.850	176.02
1.7 GHz	0.9589	172.81	1.16	55.48	0.0093	34.47	0.851	175.67
1.8 GHz	0.9586	172.23	1.10	53.57	0.0097	35.97	0.852	175.30
1.9 GHz	0.9582	171.65	1.05	51.68	0.0101	37.37	0.852	174.92
2.0 GHz	0.9579	171.07	1.00	49.81	0.0105	38.69	0.853	174.53
2.1 GHz	0.9575	170.47	0.96	47.95	0.0109	39.91	0.854	174.13
2.2 GHz	0.9570	169.87	0.92	46.12	0.0114	41.03	0.854	173.71
2.3 GHz	0.9565	169.26	0.88	44.30	0.0119	42.06	0.855	173.29
2.4 GHz	0.9559	168.64	0.85	42.49	0.0125	42.99	0.855	172.85
2.5 GHz	0.9553	168.01	0.83	40.70	0.0131	43.84	0.856	172.40
2.6 GHz	0.9546	167.36	0.80	38.92	0.0137	44.58	0.856	171.93
2.7 GHz	0.9539	166.70	0.78	37.16	0.0144	45.24	0.856	171.45
2.8 GHz	0.9531	166.03	0.76	35.40	0.0151	45.80	0.856	170.96
2.9 GHz	0.9522	165.33	0.74	33.65	0.0159	46.27	0.856	170.45
3.0 GHz	0.9513	164.63	0.72	31.92	0.0167	46.66	0.856	169.93
3.2 GHz	0.9491	163.15	0.70	28.46	0.0185	47.19	0.856	168.83
3.4 GHz	0.9465	161.57	0.67	25.01	0.0206	47.38	0.854	167.66
3.6 GHz	0.9435	159.89	0.66	21.55	0.0230	47.25	0.853	166.41
3.8 GHz	0.9399	158.10	0.65	18.07	0.0257	46.81	0.850	165.09
4.0 GHz	0.9357	156.15	0.64	14.54	0.0288	46.06	0.847	163.66
4.2 GHz	0.9306	154.04	0.64	10.94	0.0324	44.99	0.842	162.14
4.4 GHz	0.9246	151.74	0.64	7.24	0.0365	43.59	0.837	160.49
4.6 GHz	0.9175	149.22	0.65	3.40	0.0413	41.85	0.830	158.73
4.8 GHz	0.9090	146.42	0.66	-0.62	0.0469	39.74	0.822	156.80
5.0 GHz	0.8986	143.31	0.68	-4.86	0.0535	37.23	0.811	154.73
5.2 GHz	0.8862	139.83	0.70	-9.38	0.0612	34.27	0.799	152.46
5.4 GHz	0.8710	135.91	0.73	-14.24	0.0704	30.82	0.785	150.01
5.6 GHz	0.8527	131.45	0.77	-19.52	0.0812	26.80	0.768	147.32
5.8 GHz	0.8302	126.36	0.81	-25.31	0.0941	22.14	0.748	144.39
6.0 GHz	0.8030	120.50	0.86	-31.69	0.1094	16.75	0.724	141.20


Download this s-parameter file in ".s2p" format at http://www.cree.com/products/wireless_s-parameters.asp

Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Product Dimensions CGH09120F (Package Type – 440095)

NDTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIM	NOTES	
DIM	MIN	MIN MAX		МАХ	
A	0.145	0.165	3.68	4.19	
A1	0.077	0.087	1.96	2.21	
A2	0.055	0.065	1.40	1.65	
b	0.210	0.220	5.33	5.59	2x
с	0.004	0.006	0.10	0.15	
D	0.795	0.805	20.19	20.45	
D1	0.557	0.567	14.15	14.40	
D2	0.355	0.365	9.02	9.27	
D3	0.040 TYP		1.02 TYP		4x
E	0.670	0.730	17.02	18.54	
E1	0.225	0.235	5.72	5.97	
E2	0.040) TYP	1.02 TYP		4x
ø	0.13) TYP	3.30	TYP	2x
α	45 '	REF	45 '	REF	

PIN 1. GATE

2. DRAIN

3. SOURCE

Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 www.cree.com/wireless

Ryan Baker Marketing Cree, Wireless Devices 919.287.7816

Tom Dekker Sales Director Cree, Wireless Devices 919.313.5639

> Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/wireless

Copyright © 2009 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.