
PRELIMINARY

CGH40045

45 W, RF Power GaN HEMT

Cree's CGH40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40045, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGH40045 ideal for linear and compressed amplifier circuits.

Package Types: 440193 PN: CGH40045F

FEATURES

• Up to 4 GHz Operation

The transistor is available in a flange package.

- >16 dB Small Signal Gain at 2.0 GHz
- 12 dB Small Signal Gain at 4.0 GHz
- 55 W Typical P_{3dB}
- 55 % Efficiency at P3dB
- 28 V Operation

APPLICATIONS

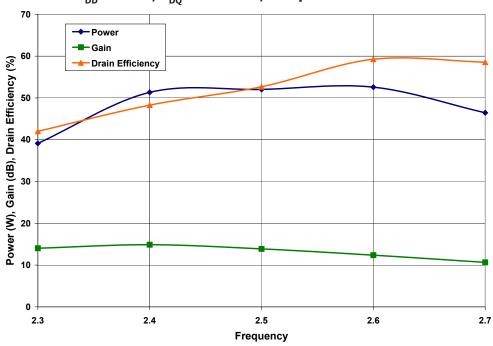
- 2-Way Private Radio
- Broadband Amplifiers
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB, Linear amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

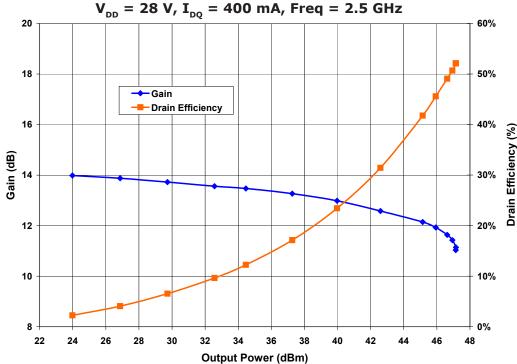
Parameter	Symbol	Rating	Units	
Drain-Source Voltage	$V_{\scriptscriptstyleDSS}$	84	Volts	
Gate-to-Source Voltage	V_{GS}	-10, +2	Volts	
Storage Temperature	T _{stg}	-55, +150	°C	
Operating Junction Temperature	Т,	175	°C	
Maximum Forward Gate Current	\mathbf{I}_{GMAX}	15	mA	
Soldering Temperature	T_s	225	°C	
Screw Torque	crew Torque T		in-oz	
Thermal Resistance, Junction to Case 1 R $_{\omega JC}$		2.7	°C/W	

Note:

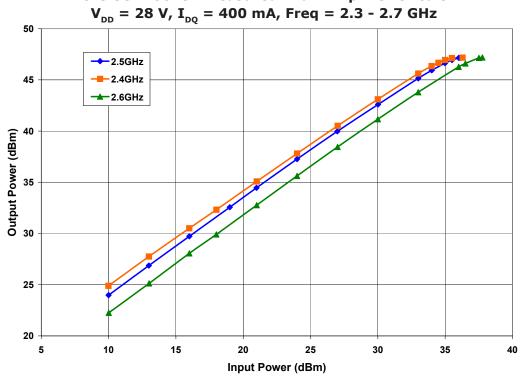
Electrical Characteristics ($T_c = 25$ °C)


Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ²						
Gate Threshold Voltage	$V_{GS(th)}$	-3.0	-2.5	-1.8	VDC	$V_{DS} = 10 \text{ V, } I_{D} = 14.4 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(\mathtt{Q})}$	-	-2.3	-	VDC	V_{DS} = 28 V, I_{D} = 400 mA
Saturated Drain Current ³	$I_{\scriptscriptstyle DS}$	9.6	10.8	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BR}}$	84	100	-	VDC	$V_{GS} = -8 \text{ V, } I_{D} = 14.4 \text{ mA}$
Case Operating Temperature ⁴	T _c	-10	-	+60	°C	$P_{\text{DISS}} = 43 \text{ W}$
RF Characteristics (T _c = 25 °C, F ₀ :	= 2.5 GHz un	less otherwis	se noted)			
Small Signal Gain	G _{ss}	12.5	14	-	dB	V_{DD} = 28 V, I_{DQ} = 400 mA
Power Output at 3 dB Compression	P_{3dB}	45	55	-	W	$V_{DD} = 28 \text{ V, } I_{DQ} = 400 \text{ mA}$
Drain Efficiency ¹	η	45	55	-	%	V_{DD} = 28 V, I_{DQ} = 400 mA, P_{OUT} = P_{3dB}
Output Mismatch Stress	VSWR	-	TBD	-	Ψ	No damage at all phase angles, $V_{DD} = 28$ V, $I_{DQ} = 400$ mA, $P_{OUT} = 45$ W CW
Dynamic Characteristics						
Input Capacitance	C_{GS}	-	19.3	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, f} = 1 \text{ MHz}$
Output Capacitance	C _{DS}	-	4.6	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$
Feedback Capacitance	C_{GD}	-	1.7	-	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$

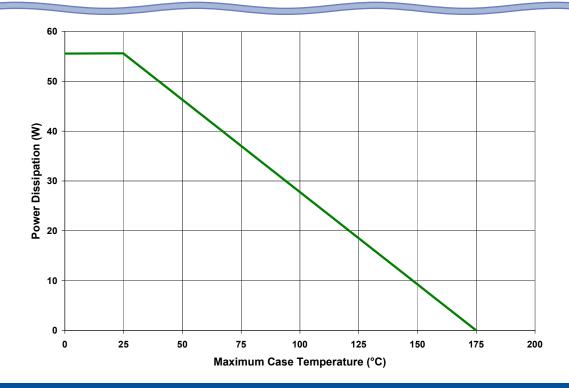
- 1 Drain Efficiency = $\rm P_{OUT}\,/\,\,P_{DC}$ 2 Measured on wafer prior to packaging.
- ³ Scaled from PCM data.
- ⁴ See also, the Power Dissipation De-rating Curve on Page 4.


 $^{^{1}}$ Measured for the CGH40045F at 43W P_{DISS}.

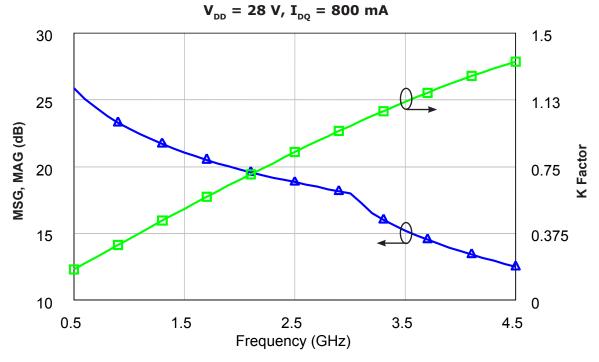
Gain, Efficiency, and Output Power vs Frequency of the CGH40045F measured in Amplifier Circuit CGH40045F-TB $V_{\rm DD}=28~V,~I_{\rm DQ}=400~mA,~Freq=2.3-2.7~GHz$



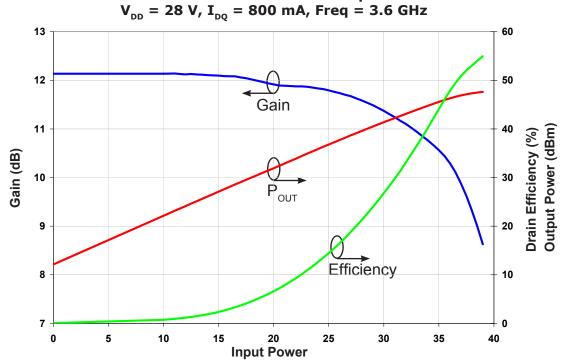
Gain and Efficiency vs Output Power of the CGH40045F measured in Amplifier Circuit CGH40045F-TB



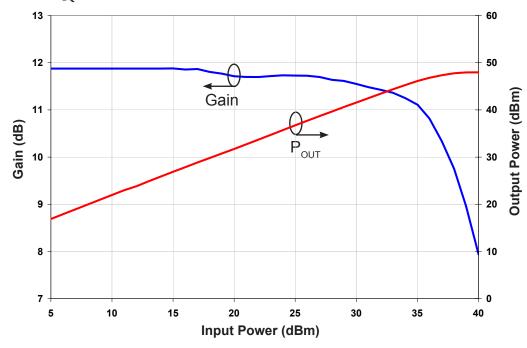
Single Tone CW Gain, Efficiency, and Output Power vs Input Power of the CGH40045F measured in an Amplifier Circuit

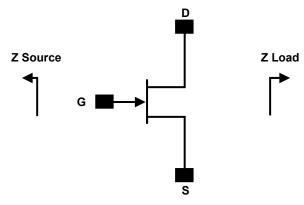


CGH40045F Power Dissipation De-rating Curve



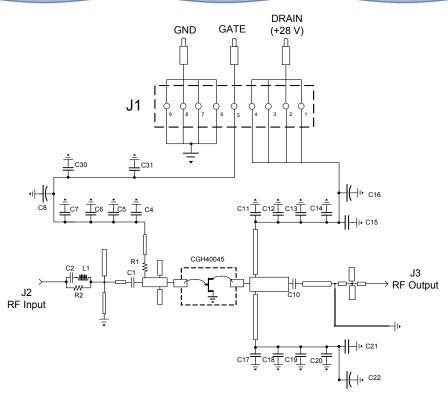
Simulated Maximum Stable Gain, Maximum Available Gain and K Factor of the CGH40045F


Single Tone CW Gain, Efficiency, and Output Power vs Input Power of the CGH40045F measured in an Amplifier Circuit

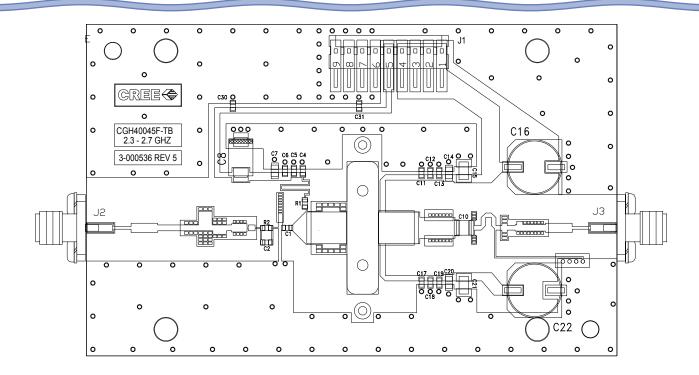


Pulsed Gain and Output Power vs Input Power of the CGH40045F measured in an Amplifier Circuit

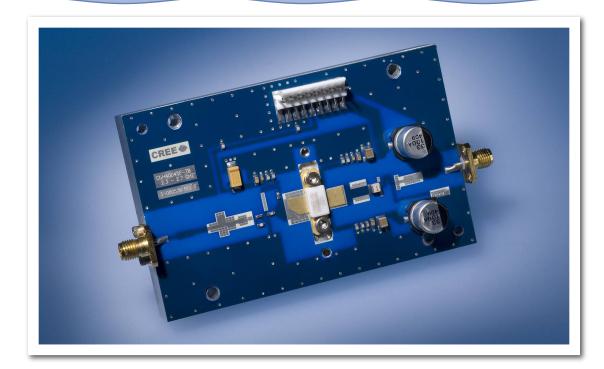
Simulated Source and Load Impedances


Frequency (MHz)	Z Source	Z Load		
500	3.34 + j4.56	10.8 + j8.24		
1000	2.07 + j0.05	6.18 + j4.17		
2000	1.3 - j3.37	4.65 + j0.05		
3000	1.64 - j8.15	4.75 - j3.4		
4000	1.9 - j10.8	4.56 - j7.9		

Note 1. $V_{\rm DD}$ = 28V, $I_{\rm DQ}$ = 800mA in the 440193 package.

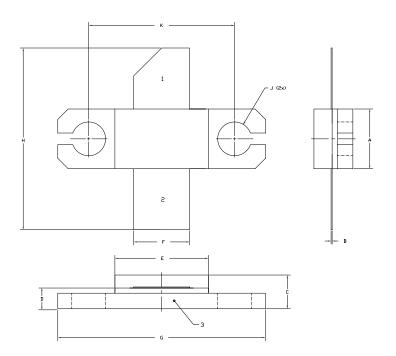

Note 2. Optimized for P_{3dB} and Drain Efficiency

CGH40045F-TB Demonstration Amplifier Circuit Schematic



CGH40045F-TB Demonstration Amplifier Circuit Outline

CGH40045F-TB Demonstration Amplifier Circuit



CGH40045F-TB Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C1	CAP, 6.8pF, ± -0.25 pF, 0603	1
C2	CAP, 1.8pF, ± -0.1 pF, 0603	1
C3,C10	CAP, 5.6pF, ± -0.1pF, 0603	2
C12	CAP, 10000pF, 100V, TEMP STBL, 0805	1
C6,C13	CAP, 0.1uF ±10%, 100 V, 1206, X7R	2
C4,C11	CAP, 100pF±5%, 0603	2
C8	CAP, 10UF, 16V, SMT, TANTALUM	1
C9	CAP, 0.2pF, ± -0.05pF, 0603	1
C7,C14	CAP, 1.0UF ±10%, 100V, 1210, X7R	2
C5,C15,C18,C30,C31	CAP, 82.0pF, ±5%, 0603	5
C16	CAP, 4.7pF, ± 0.25pF, 0603	1
R2	RES, 1/16W, 0603, 100 Ohms 1%	1
R1	RES, 1/16W, 0603, 5.1 Ohms 1%	1
L1	FERRITE, 220 OHM, 0805	1
L2	FERRITE, 22 OHM, 0805	1
J2,J3	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J1	CONN, HEADER, RT>PLZ .1CEN LK 9POS	1
Q1	CGH40045	1

Product Dimensions CGH40045F (Package Type — 440193)

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

		INC	HES	MILLIM	ETERS
DI	M	MIN	MAX	MIN	MAX
Α		0.225	0.235	5.72	5.97
В		0.004	0.006	0.10	0.15
С		0.125	0.135	3.18	3.43
D		0.077	0.087	1.96	2.21
E		0.355	0.365	9.02	9.27
F		0.210	0.220	5.33	5.59
G		0.795	0.805	20.19	20.45
Н		0.670	0.730	17.02	18.54
J		ø .130		3.3	50
k		0.562		14.	28

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, NC 27703 www.cree.com/wireless

Ryan Baker Marketing Cree, Wireless Devices 919.287.7816

Tom Dekker Sales Director Cree, Wireless Devices 919.313.5639