SSIREnZA

 Product DescriptionSirenza Microdevices' SHF-0589 is a high performance AIGaAs/ GaAs Heterostructure FET (HFET) housed in a low-cost sur-face-mount plastic package. The HFET technology improves breakdown voltage while minimizing Schottky leakage current resulting in higher PAE and improved linearity.
Output power at 1 dB compression is +33.4 dBm when biased for Class AB operation at $7 \mathrm{~V}, 345 \mathrm{~mA}$ at 1.96 GHz . The +46.5 dBm third order intercept makes it ideal for high dynamic range, high intercept point requirements. It is well suited for use in both analog and digital wireless communication infrastructure and subscriber equipment including 3G, cellular, PCS, fixed wireless, and pager systems.

OBSOLETE

Last Time Buy Date: 14-Dec-2007
Final Shipment Date: 13-June-2008

Applications

- Analog and Digital Wireless Systems
- 3G, Cellular, PCS
- Fixed Wireless, Pager Systems

Symbol	Device Characteristics	Test Conditions,25C $\mathrm{V}_{\mathrm{Ds}}=7 \mathrm{~V}, \mathrm{I}_{\mathrm{p} 0}=345 \mathrm{~A}$ (unless otherwis oted)	Test Frequency	Units	M in	Typ	Max
Gmax	Maximum Available Gain	$\mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{s}}{ }^{*}, \mathrm{Z}=\mathrm{Z}_{\mathrm{L}}$	$\begin{aligned} & 0.90 \mathrm{GHz} \\ & 1.96 \mathrm{GHz} \\ & 2.14 \mathrm{GHz} \end{aligned}$	dB dB dB	-	$\begin{aligned} & 22.9 \\ & 17.4 \\ & 16.6 \end{aligned}$	-
S_{21}	Insertion G ain ${ }^{[1]}$	$Z Z_{L}=-0 \mathrm{hms}$	0.90 G Hz	dB	14.1	15.7	17.3
G ain	Power Gain ${ }^{[2]}$	A, will tion Circuit	1.96 GHz	d B m	10.3	11.5	12.7
OIP 3	Output Third Order Intercept Point ${ }^{[2]}$ pplication Circuit		1.96 GHz	d B m	44	46.5	-
P1dB	Output 1dB Compression Point \quad pplication Circuit		1.96 GHz	d B m	31.9	33.4	-
$\mathrm{P}_{\text {CHAN }}$	IS-95 Channel Power (-45dBc, CPF)	Application Circuit	1.96 GHz	d B m	-	26.2	-
NF	Noise Figure ${ }^{[2]}$	Application Circuit	1.96 G Hz	dB	-	3.7	-
$\mathrm{I}_{\text {DSs }}$	Saturated D rain Current	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSP}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		mA	816	1176	1536
g_{m}	Tranconductance	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\text {DSP }}, \mathrm{V}_{\mathrm{GS}}=-0.25 \mathrm{~V}$		m S	576	792	1008
V_{P}	Pinch-Off Voltage ${ }^{[1]}$	$\mathrm{V}_{\mathrm{DS}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=2.4 \mathrm{~mA}$		V	-3.0	-1.9	-1.0
$B V_{\text {Gs }}$	Gate-Source Breakdown Voltage ${ }^{[1]}$	$\mathrm{I}_{\mathrm{GS}}=4.8 \mathrm{~mA}$, drain open		V	-	-17	-15
$B V_{\text {GD }}$	Gate-Drain Breakdown Voltage ${ }^{[1]}$	$\mathrm{I}_{\mathrm{GD}}=4.8 \mathrm{~m} \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=-5.0 \mathrm{~V}$		V	-	-22	-17
Rth	Thermal Resistance	junction-to-lead		${ }^{\circ} \mathrm{C} / \mathrm{W}$	-	23	-
$\mathrm{V}_{\text {DS }}$	Operating Voltage ${ }^{[3]}$	drain-source		V	-	-	8.0
I_{DQ}	Operating C urrent ${ }^{[3]}$	drain-source, quiescent		m A	-	-	480
$\mathrm{P}_{\text {DISS }}$	Power Dissipation ${ }^{[3]}$			C	-	-	2.4

[1] 100\% tested - Insertion gain tested using a 50 ohm contact board (no matching circuitry) during final production test.
[2] Sample tested -Samples pulled from each wafer/package lot. Sample test specifications are based on statistical data from sample test measurements. The test fixture is an engineering application circuit board. The application circuit was designed for the optimum combination of linearity, P1dB, and VSWR.
[3] Maximum recommended power dissipation is specified to maintain $T_{J}<140 \mathrm{C}$ at $T_{L}=85 \mathrm{C} .\left.\mathrm{V}_{\mathrm{DS}}{ }^{*}\right|_{\mathrm{DQ}}<2.4 \mathrm{~W}$ is recommended for continuous reliable operation.
The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions
Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems.
Copyright 2007 Sirenza Microdevices, Inc. All worldwide rights reserved.
303 S. Technology Ct.
Phone: (800) SMI-MMIC

Absolute Maximum Ratings

MTTF is inversely proportional to the device junction temperature. For junction temperature and MTTF considerations the bias condition should also satisfy the following expression:

$$
P_{D C}<\left(T_{J}-T_{L}\right) / R_{T H}
$$

where:

$$
P_{D C}=I_{D S} * V_{D S}(W)
$$

$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{\mathrm{L}}=$ Lead Temperature (pin 4) $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{R}_{\mathrm{TH}}=$ Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)

MTTF @ $T_{j}=150 C$ exceeds 1E7 hours

Parameter	Symbol	Value	Unit
Drain Current	I_{DS}	640	mA
Forward Gate Current	$\mathrm{I}_{\mathrm{GSF}}$	4.8	mA
Reverse Gate Current	$\mathrm{I}_{\mathrm{GSR}}$	4.8	mA
Drain-to-Source Voltage	V_{DS}	9.0	V
Gate-to-Source Voltage	V_{GS}	<-5 or >0	V
RF Input Power	P_{IN}	800	mW
Operating Lead Temperature	T_{L}	See Graph	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stor }}$	-40 to +165	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{DISS}}$	See Graph	W
Channel Temperature	T_{J}	165	${ }^{\circ} \mathrm{C}$

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page 1

Design Considerations and Trac'e-offs

1. The SHF-0x89 is a depletion mode FET and requires a negative gate voltage. Normal pinchoff variation from part-topart precludes the use of a fixed gate voltage for all devices. Active bias circuitry or manual gate bias alignment is recommended to maintain acceptable performance (RF and thermal).
2. Active bias circuitry is strongly recommended for class A operation (backoff $>6 \mathrm{~dB}$).
3. For large signal operation ($<6 \mathrm{~dB}$ backoff) class $A B$ operation is required to maximize the FET's performance. Passive gate bias circuitry is generally required to achieve pure class $A B$ performance. This is generally accomplished using a voltage divider with temperature compensation. Per item 1 above the gate voltage should be aligned for each device to eliminate the effects of pinchoff process variation.
4. Choose the operating voltage based on the amount of backoff. For large signal operation the drain-source voltage should be increased to 8 V to maximize P 1 dB . For small signal operation OIP3 may be improved by reducing the voltage and increasing the current. The recommended application circuit should be re-optimized if the recommended 7 V bias condition is not used. Make sure the quiescent bias condition does not exceed the recommended power dissipation limit (shown on page 1).

! OBSOLETE
 SHF-0589 2 Watt HFET

De-embedded S-Parameters $\left(Z_{S}=Z_{L}=50\right.$ Ohms, $\left.V_{D S}=7 V, I_{D S}=345 \mathrm{~mA}, 25^{\circ} \mathrm{C}\right)$

Note: S-parameters are de-embedded to the device leads with $Z_{S}=Z_{L}=50 \Omega$. The data represents typical performace of the device. De-embedded s-parameters can be downloaded from our website (www.sirenza.com).

Typical Performance - Engineering Application Circuits

Freq (MHz)	$\begin{aligned} & v_{\mathrm{DS}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{l}_{\mathrm{Do}} \\ (\mathrm{~mA}) \end{gathered}$	P1dB (dBm)	$-45 \mathrm{dBc}$ Channel Power (dBm)	$-55 \mathrm{dBc}$ Channel Power (dBm)	$\begin{aligned} & \mathrm{OIP3}^{[6]} \\ & (\mathrm{dBm}) \end{aligned}$	Gain (dB)	$\begin{aligned} & \text { S11 } \\ & \text { (dB) } \end{aligned}$	$\begin{aligned} & \mathrm{S} 22 \\ & (\mathrm{~dB}) \end{aligned}$	$\begin{gathered} \mathrm{NF} \\ (\mathrm{~dB}) \end{gathered}$
900	7	345	32.0	$25.7{ }^{[4]}$	$23.2{ }^{[4]}$	45.0	16.3	-20	-10	3.6
1960	7	345	33.4	$26.2{ }^{[4]}$	$23.2{ }^{[4]}$	46.5	11.5	-15	-12	3.7
2140	7	345	32.7	$23.7{ }^{[5]}$	$20.5{ }^{[5]}$	46.4	11.1	-15	-12	4.4

[4] IS-95 CDMA Channel Power (9 Fwd Channels, 885kHz offset, 30kHz Adj Chan BW)
[5] W-CDMA Channel Power (64 DPCH, 5MHz offset, 3.84MHz Adj Chan BW)
[6] $\mathrm{P}_{\text {oUT }}=+15 \mathrm{dBm}$ per tone, 1 MHz tone spacing

Part Number Ordering Information

Caution: ESD sensitive
Appropriate precautions in handling, packaging and testing devices must be observed

Pin Description

Pin \#	Function	Description
1	Gate	RF Input
2	Source	Connection to ground. Use via holes to reduce lead inductance. Place vias as close to ground leads as possible.
3	Drain	RF Output
4	Source	Same as Pin 2

Mounting and Thermal Considerations

It is very important that adequate heat sinking be provided to minimize the device junction temperature. The following items should be implemented to maximize MTTF and RF performance.

1. Multiple solder-filled vias are required directly below the ground tab (pin 4). [CRITICAL]
2. Incorporate a large ground pad area with multiple plated-through vias around pin 4 of the device. [CRITICAL]
3. Use two point board seating to lower the thermal resistance between the PCB and mounting plate. Place machine screws as close to the ground tab (pin 4) as possible. [CRITICAL]
4. Use 2 ounce copper to improve the PCB's heat spreading capability. [CRITICAL]
5. Thermal transfer paste should be used between

Part Number	Reel Size	Devices/Reel
SHF-0589	$7^{\prime \prime}$	1000

Part Symbolization

The part will be symbolized with the "H5" designator and a dot signifying pin 1 on the top surface of the package.

Package Dimensions

 the PCB and the mounting plate to improve heat spreading capability. [RECOMMENDED]

Recommendec ne-unting Configuration for Optimum R ana Thermal Performance

