Preferred Device

Self-Protected FET with Temperature and Current Limit

HDPlus devices are an advanced series of power MOSFETs which utilize ON Semiconductor's latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain-to-Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate-to-Source Clamp.

Features

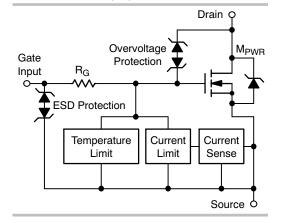
- Current Limitation
- Thermal Shutdown with Automatic Restart
- Short Circuit Protection
- Low R_{DS(on)}
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection
- Pb-Free Packages are Available

MOSFET MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage Internally Clamped	V _{DSS}	40	Vdc		
Drain-to-Gate Voltage Internally Clamped (R_{GS} = 1.0 M Ω)	V _{DGR}	40	Vdc		
Gate-to-Source Voltage	V _{GS}	±16	Vdc		
$\begin{array}{l} \text{Drain Current} \\ \text{- Continuous @ } T_{\text{A}} = 25^{\circ}\text{C} \\ \text{- Continuous @ } T_{\text{A}} = 100^{\circ}\text{C} \\ \text{- Pulsed } (t_{p} \leq 10 \ \mu\text{s}) \end{array}$	I _D I _D I _{DM}	Interr Limi			
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2) @ $T_A = 25^{\circ}C$ (Note 3)	P _D	1.1 1.73 8.93	W		
Thermal Resistance, Junction-to-Tab Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$f R_{ heta JT} \ R_{ heta JA} \ R_{ heta JA}$	14 114 72.3	°C/W		
$ Single Pulse Drain-to-Source Avalanche Energy \\ (V_{DD} = 25 \mbox{ Vdc}, \ V_{GS} = 5.0 \mbox{ Vdc}, \\ V_{DS} = 40 \mbox{ Vdc}, \ I_L = 2.8 \mbox{ Apk}, \ L = 80 \mbox{ mH}, \\ R_G = 25 \ \Omega) $	E _{AS}	300	mJ		
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C		

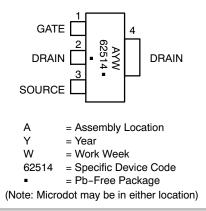
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Mounted onto min pad board.
- 2. Mounted onto 1" pad board.


3. Mounted onto large heatsink.

ON

ON Semiconductor®


http://onsemi.com

6.0 AMPERES* 40 VOLTS CLAMPED R_{DS(on)} = 90 mΩ

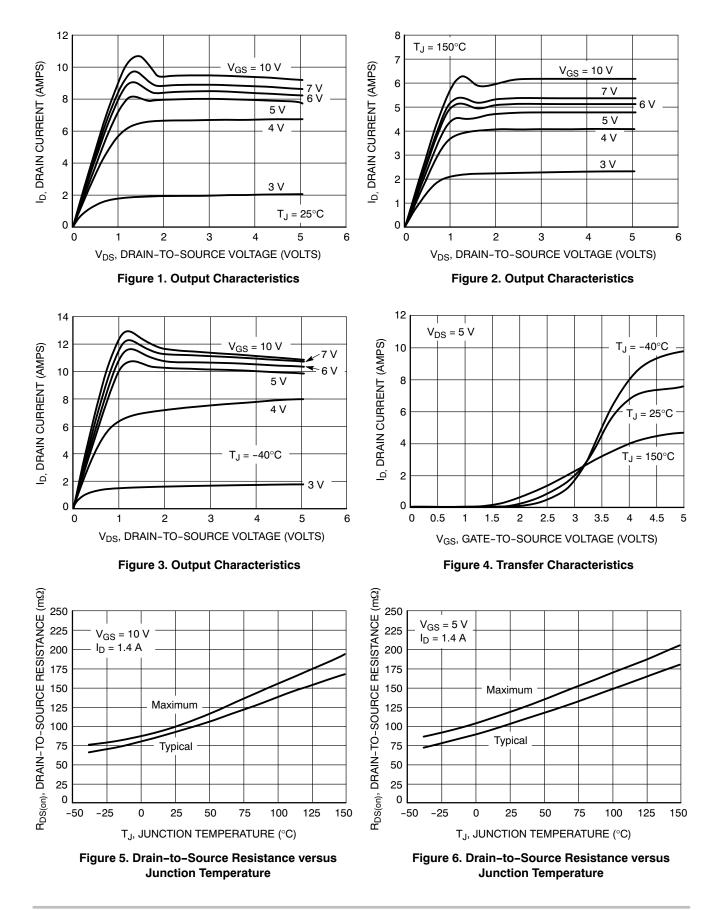
MARKING DIAGRAM

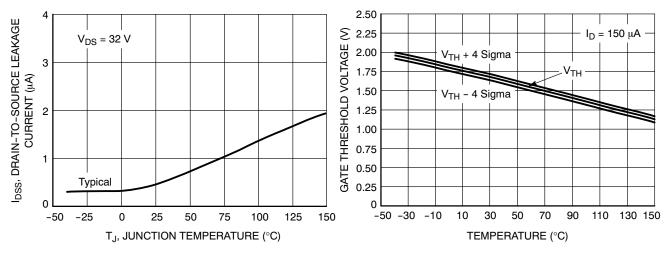
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

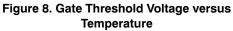
Preferred devices are recommended choices for future use and best overall value.

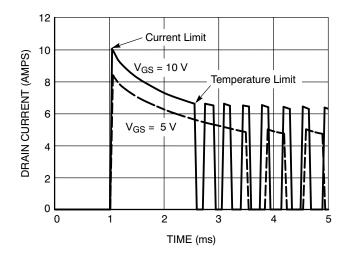
*Limited by the current limit circuit.

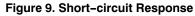

© Semiconductor Components Industries, LLC, 2007 November, 2007 – Rev. 6

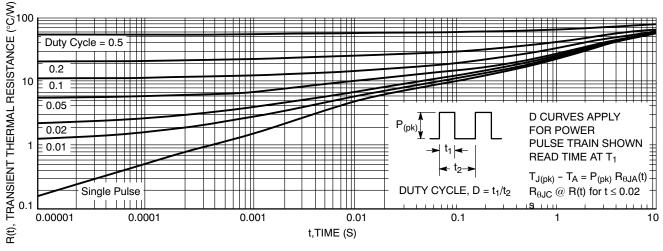

Publication Order Number: NIF62514/D

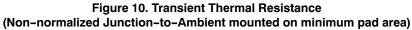
Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Clamped Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \ \mu\text{Adc})$ $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \ \mu\text{Adc}, T_J = 150^{\circ}\text{C})$			42 42	46 45	50 50	Vdc
Zero Gate Voltage Drain Current ($V_{DS} = 32$ Vdc, $V_{GS} = 0$ Vdc) ($V_{DS} = 32$ Vdc, $V_{GS} = 0$ Vdc, $T_J = 150^{\circ}$ C)			- -	0.5 2.0	2.0 10	μAdc
Gate Input Current ($V_{GS} = 5.0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$) ($V_{GS} = -5.0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$)			- -	50 550	100 1000	μAdc
ON CHARACTERISTICS				•	•	•
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 150 \ \mu Adc)$ Threshold Temperature Coefficient (Negative)			1.0 -	1.7 4.0	2.0 6.0	Vdc mV/°C
Static Drain-to-Source On-Resistance (Note 4) ($V_{GS} = 10 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J @ 25^{\circ}\text{C}$) ($V_{GS} = 10 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J @ 150^{\circ}\text{C}$)			- -	90 165	100 190	mΩ
Static Drain-to-Source On-Resistance (Note 4) $(V_{GS} = 5.0 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J @ 25^{\circ}\text{C})$ $(V_{GS} = 5.0 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J @ 150^{\circ}\text{C})$			-	105 185	120 210	mΩ
Source-Drain Forward On Voltage $(I_S = 7 \text{ A}, V_{GS} = 0 \text{ V})$			-	1.05	-	V
SWITCHING CHARACTERISTICS						
Turn-on Delay Time	10% V _{in} to 10% I _D R _L = 4.7 Ω , V _{in} = 0 to 10 V, V _{DD} = 12 V	t _{d(on)}	-	4.0	8.0	μs
Turn-on Rise Time	10% I_D to 90% I_D R_L = 4.7 Ω,V_{in} = 0 to 10 V, V_{DD} = 12 V	t _{rise}	-	11	20	μS
Turn-off Delay Time	90% V _{in} to 90% I _D R _L = 4.7 $\Omega,$ V _{in} = 10 to 0 V, V _{DD} = 12 V	t _{d(off)}	-	32	50	μS
Turn-off Fall Time	90% I_D to 10% I_D R_L = 4.7 Ω,V_{in} = 10 to 0 V, V_{DD} = 12 V	t _{fall}	-	27	50	μS
Slew-Rate On	$\label{eq:RL} \begin{array}{l} R_{L} = 4.7 \ \Omega, \\ V_{in} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V \end{array}$	$-dV_{DS}/dt_{on}$	-	1.5	2.5	μS
Slew-Rate Off $\begin{array}{c} R_{L} = 4.7 \ \Omega, \\ V_{in} = 10 \ to \ 0 \ V, \ V_{DD} = 12 \ V \end{array}$		dV _{DS} /dt _{off}	-	0.6	1.0	μS
SELF PROTECTION CHARACTERISTIC	CS (T _J = 25° C unless otherwise noted)					
Current Limit	$(V_{GS} = 5.0 \text{ Vdc})$ $(V_{GS} = 5.0 \text{ Vdc}, \text{ T}_{\text{J}} = 150^{\circ}\text{C})$		6.0 3.0	9.0 5.0	11 8.0	Adc
Current Limit	(V _{GS} = 10 Vdc) (V _{GS} = 10 Vdc, T _J = 150°C)	I _{LIM}	7.0 4.0	10.5 7.5	13 10	Adc
Temperature Limit (Turn-off)	V _{GS} = 5.0 Vdc	T _{LIM(off)}	150	175	200	°C
Temperature Limit (Circuit Reset)	V_{GS} = 5.0 Vdc	T _{LIM(on)}	135	160	185	°C
Temperature Limit (Turn-off)	V _{GS} = 10 Vdc	T _{LIM(off)}	150	155	185	°C
Temperature Limit (Circuit Reset) V _{GS} = 10 Vdc		T _{LIM(on)}	130	140	170	°C
ESD ELECTRICAL CHARACTERISTICS	\mathbf{S} (T _J = 25°C unless otherwise noted)			-	•	•
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000	-	-	V
Electro-Static Discharge Capability Machine Model (MM)		ESD	400	-	-	V

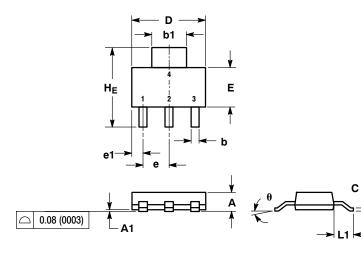

4. Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2%.


TYPICAL ELECTRICAL CHARACTERISTICS








ORDERING INFORMATION

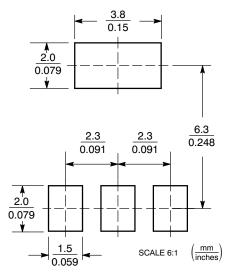
Device	Package	Shipping [†]
NIF62514T1	SOT-223	
NIF62514T1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NIF62514T3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE M

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI


Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°

STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative