Features - ► Free from secondary breakdown - ► Low power drive requirement - Ease of paralleling - ► Low C_{ISS} and fast switching speeds - Excellent thermal stability - ► Integral source-drain diode - ► High input impedance and high gain ### **Applications** - Motor controls - Converters - Amplifiers - Switches - Power supply circuits - Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.) ### **General Description** The Supertex VN2224 is an enhancement-mode (normally-off) transistor that utilizes a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors, and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown. Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired. ## **Ordering Information** | Device | Package Option | BV _{DSS} /BV _{DGS} | R _{DS(ON)} | l _{D(ON)}
(min)
(A) | | |--------|----------------|--------------------------------------|---------------------|------------------------------------|--| | Device | TO-92 | (V) | (max)
(Ω) | | | | VN2224 | VN2224N3-G | 240 | 1.25 | 5.0 | | -G indicates package is RoHS compliant ('Green') ## **Absolute Maximum Ratings** | Parameter | Value | | | | |-----------------------------------|-------------------|--|--|--| | Drain-to-source voltage | BV _{DSS} | | | | | Drain-to-gate voltage | BV_{DGS} | | | | | Gate-to-source voltage | ±20V | | | | | Operating and storage temperature | -55°C to +150°C | | | | | Soldering temperature* | +300°C | | | | Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground. ## **Pin Configuration** ## **Product Marking** YY = Year Sealed WW = Week Sealed ____ = "Green" Packaging TO-92 (N3) ^{*} Distance of 1.6mm from case for 10 seconds. ### **Thermal Characteristics** | Package | l _D
(continuous) [†]
(A) | I _D
(pulsed)
(A) | Power Dissipation
@T _c = 25°C
(W) | θ _{JC}
(°C/W) | θ _{JA}
(°C/W) | †
(A) | I _{DRM}
(A) | |---------|--|-----------------------------------|--|----------------------------------|---------------------------|----------|-------------------------| | TO-92 | 0.54 | 5.0 | 1.0 | 125 | 170 | 0.54 | 5.0 | #### Notes: ### Electrical Characteristics (T_A = 25°C unless otherwise specified) | Sym | Parameter | Min | Тур | Max | Units | Conditions | | |---------------------|--|------|------|------|-------|--|--| | BV _{DSS} | Drain-to-source breakdown voltage | 240 | - | - | V | $V_{GS} = 0V, I_{D} = 5.0 \text{mA}$ | | | V _{GS(th)} | Gate threshold voltage | 1.0 | - | 3.0 | V | $V_{GS} = V_{DS}$, $I_D = 5.0 \text{mA}$ | | | $\Delta V_{GS(th)}$ | Change in V _{GS(th)} with temperature | - | -4.0 | -5.0 | mV/°C | $V_{GS} = V_{DS}$, $I_D = 5.0 \text{mA}$ | | | I _{GSS} | Gate body leakage current | - | 1.0 | 100 | nA | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | | | | _ | 50 | μA | $V_{GS} = 0V$, $V_{DS} = Max$ Rating | | | DSS | Zero gate voltage drain current | - | - | 5.0 | mA | $V_{DS} = 0.8$ Max Rating,
$V_{GS} = 0V$, $T_{A} = 125^{\circ}C$ | | | | On state drain correct | 2.0 | - | _ | | $V_{GS} = 5.0V, V_{DS} = 25V$ | | | I _{D(ON)} | On-state drain current | 5.0 | 10 | - | Α | V _{GS} = 10V, V _{DS} = 25V | | | Ь | Chatia drain to accurac an atata resistance | - | 1.0 | 1.5 | 0 | $V_{GS} = 5.0V, I_{D} = 2.0A$ | | | R _{DS(ON)} | Static drain-to-source on-state resistance | - | 0.9 | 1.25 | Ω | V _{GS} = 10V, I _D = 2.0A | | | $\Delta R_{DS(ON)}$ | Change in R _{DS(ON)} with temperature | - | 1.0 | 1.4 | %/°C | $V_{GS} = 10V, I_{D} = 2.0A$ | | | G _{FS} | Forward transconductance | 1000 | 2200 | - | mmho | $V_{DS} = 25V, I_{D} = 2.0A$ | | | C _{ISS} | Input capacitance | - | 300 | 350 | | V _{GS} = 0V, | | | C _{oss} | Common Source output capacitance | - | 85 | 150 | pF | $V_{DS} = 25V,$ | | | C _{RSS} | Reverse transfer capacitance | - | 20 | 35 | | f = 1.0MHz | | | t _{d(ON)} | Turn-on delay time | - | 6.0 | 15 | | | | | t _{d(OFF)} | Turn-off delay time | - | 65 | 90 | ns | $V_{DD} = 25V,$ | | | t _r | Rise time | - | 16 | 25 | | $\begin{vmatrix} I_D = 2.0A, \\ R_{GEN} = 10\Omega \end{vmatrix}$ | | | t _f | Fall time | - | 30 | 60 | | GEN | | | t _{rr} | Reverse recovery time | - | 500 | - | ns | V _{GS} = 0V, I _{SD} = 1.0A | | | V _{SD} | Diode forward voltage drop | - | 0.8 | 1.0 | V | $V_{GS} = 0V, I_{SD} = 100mA$ | | #### Notes: - 1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.) - 2. All A.C. parameters sample tested. ## **Switching Waveforms and Test Circuit** $[\]dagger I_{D}$ (continuous) is limited by max rated T_{i} . ## **Typical Performance Curves** ## Typical Performance Curves (cont.) # 3-Lead TO-92 Package Outline (N3) Side View | Sym | Symbol | | b | С | D | E | E1 | е | e1 | L | |--------------------|--------|------|------|------|------|------|------|------|------|------| | | MIN | .170 | .014 | .014 | .175 | .125 | .080 | .095 | .045 | .500 | | Dimension (inches) | NOM | - | - | - | - | - | - | - | - | - | | (iiiciics) | MAX | .210 | .022 | .022 | .205 | .165 | .105 | .105 | .055 | .610 | Drawings not to scale. Supertex Doc.#: DSPD-3TO92N3, Version D061608. (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.) **Supertex inc.** does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement." **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com. ©2008 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited. **Supertex inc.** 1235 Bordeaux Drive, Sunnyvale, CA 94089 TEL: (408) 222-8888 / FAX: (408) 222-4895 www.supertex.com