Power MOSFET

-30 V, -3.5 A, Single P-Channel, SOT-23

Features

- Low R_{DS(on)} at Low Gate Voltage
- Low Threshold Voltage
- High Power and Current Handling Capability
- This is a Pb–Free Device

Applications

- · Load Switch
- Optimized for Battery and Load Management Applications in Portable Equipment like Cell Phones, PDA's, Media Players, etc.

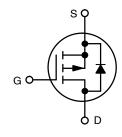
MAXIMUM RATINGS (T _J = 25° C unless otherwise noted)							
Parame	Symbol	Value	Unit				
Drain-to-Source Voltage			V _{DSS}	-30	V		
Gate-to-Source Voltage	Gate-to-Source Voltage				V		
Continuous Drain	Steady T _A = 25°			-2.2			
Current (Note 1)	State	$T_A = 85^{\circ}C$	Ι _D	-1.5	А		
	t ≤ 5 s	$T_A = 25^{\circ}C$		-3.5			
Power Dissipation	Steady			0.48			
(Note 1)	State	T _A = 25°C	PD		W		
	t ≤ 5 s			1.25			
Pulsed Drain Current	t _p =	i 10 μs	I _{DM}	-15.0	А		
Operating Junction and S	TJ,	-55 to	°C				
	T _{stg}	150	Ŭ				
Source Current (Body Dio	۱ _S	-1.0	mA				
Lead Temperature for Sol	ΤL	260	°C				
(1/8" from case for 10 s)							

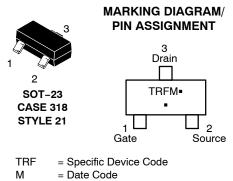
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	260	°C/W
Junction-to-Ambient – t \leq 10 s (Note 1)	$R_{\theta JA}$	100	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq 1. [2 oz] including traces)




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
–30 V	75 mΩ @ −10 V	-2.2 A		
	110 mΩ @ –4.5 V	–1.8 A		
	150 mΩ @ –2.5 V	–1.0 A		

P-CHANNEL MOSFET

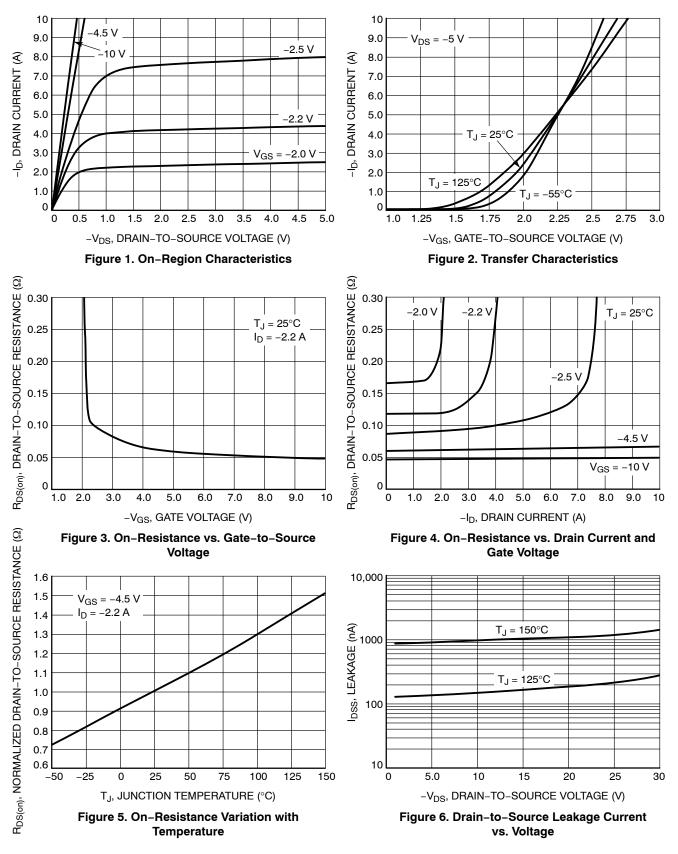
= Pb-Free Package

(Note: Microdot may be in either location)

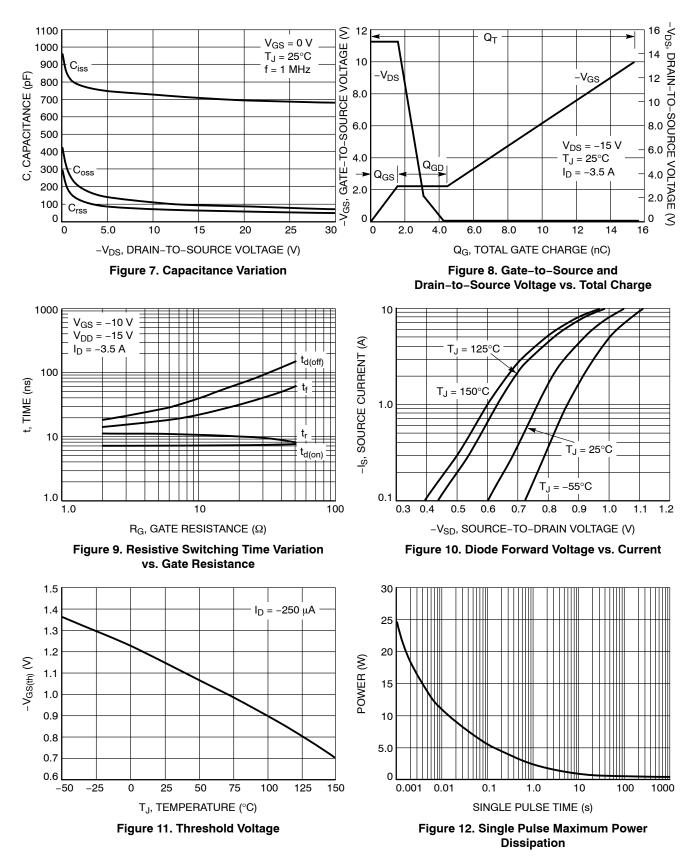
ORDERING INFORMATION

Device	Package	Shipping [†]
NTR4171PT1G	SOT-23 (Pb-Free)	3000/Tape & Reel
NTR4171PT3G	SOT-23 (Pb-Free)	10000/Tape & Reel

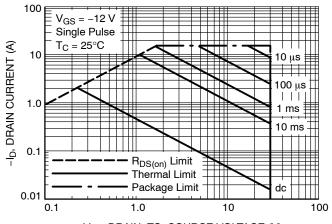
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


Downloaded from Elcodis.com electronic components distributor

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


))DSS))DSS J SS SS (TH) TH)/TJ S(on) =S	$\begin{split} & V_{GS} = 0 \ V, \ I_D = -250 \ \mu A \\ & I_D = -250 \ \mu A, \ Reference \ to \ 25^\circ C \\ & V_{GS} = 0 \ V, \ V_{DS} = -24 \ V, \ T_J = 25^\circ C \\ & V_{GS} = 0 \ V, \ V_{DS} = -24 \ V, \ T_J = 85^\circ C \\ & V_{DS} = 0 \ V, \ V_{GS} = \pm 12 \ V \\ & V_{GS} = V_{DS}, \ I_D = -250 \ \mu A \\ & V_{GS} = -10 \ V, \ I_D = -250 \ \mu A \\ & V_{GS} = -4.5 \ V, \ I_D = -1.8 \ A \\ & V_{GS} = -2.5 \ V, \ I_D = -1.0 \ A \end{split}$	-30		-1.0 -5.0 ±0.1	۷ mV/°C μΑ μΑ	
)DSS J SS SS :(TH) TH)/TJ S(on)	$I_{D} = -250 \ \mu\text{A}, \text{Reference to } 25^{\circ}\text{C}$ $V_{GS} = 0 \ \text{V}, V_{DS} = -24 \ \text{V}, T_{J} = 25^{\circ}\text{C}$ $V_{GS} = 0 \ \text{V}, V_{DS} = -24 \ \text{V}, T_{J} = 85^{\circ}\text{C}$ $V_{DS} = 0 \ \text{V}, V_{GS} = \pm 12 \ \text{V}$ $V_{GS} = V_{DS}, I_{D} = -250 \ \mu\text{A}$ $V_{GS} = -10 \ \text{V}, I_{D} = -2.2 \ \text{A}$ $V_{GS} = -4.5 \ \text{V}, I_{D} = -1.8 \ \text{A}$		-1.15 3.5	-5.0 ±0.1	mV/°C μΑ μΑ	
「」 SS SS SS (TH) TH)/T」 S(on)	$V_{GS} = 0 V, V_{DS} = -24 V, T_J = 25^{\circ}C$ $V_{GS} = 0 V, V_{DS} = -24 V, T_J = 85^{\circ}C$ $V_{DS} = 0 V, V_{GS} = \pm 12 V$ $V_{GS} = V_{DS}, I_D = -250 \mu A$ $V_{GS} = -10 V, I_D = -2.2 A$ $V_{GS} = -4.5 V, I_D = -1.8 A$	-0.7	-1.15 3.5	-5.0 ±0.1	μΑ μΑ	
SS (TH) TH)/TJ S(on)	$V_{GS} = 0 \text{ V}, V_{DS} = -24 \text{ V}, T_J = 85^{\circ}\text{C}$ $V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$ $V_{GS} = V_{DS}, I_D = -250 \mu\text{A}$ $V_{GS} = -10 \text{V}, I_D = -2.2 \text{A}$ $V_{GS} = -4.5 \text{V}, I_D = -1.8 \text{A}$	-0.7	3.5	-5.0 ±0.1	μΑ	
i(TH) _{ΓH)} /T _J S(on)	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$ $V_{GS} = -10 \ V, I_D = -2.2 \ A$ $V_{GS} = -4.5 \ V, I_D = -1.8 \ A$	-0.7	3.5		,	
ſH)/TJ S(on)	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$ $V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.8 \text{ A}$	-0.7	3.5	-1.4		
ſH)/TJ S(on)	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$ $V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.8 \text{ A}$	-0.7	3.5	-1.4		
ſH)/TJ S(on)	V _{GS} = -4.5 V, I _D = -1.8 A				V	
	V _{GS} = -4.5 V, I _D = -1.8 A				mV/°C	
			50	75	mΩ	
≡s			60	110	=	
⁼S	$v_{GS} = -2.5 v, I_D = -1.0 A$		90	150	-	
	$V_{DS} = -5.0 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$		7.0		S	
ANCE					4	
ss			720		pF	
oss	$V_{GS} = 0 V, f = 1.0 MHz,$		95			
rss	V _{DS} = -15 V		65			
тот)			15.6		nC	
(TH)	V _{GS} = –10 V, V _{DS} = –15 V,		0.7			
GS	$I_{\rm D} = -3.5 \rm{A}$		1.6			
GD			2.6			
тот)			7.4		nC	
(TH)	Vec = -4.5 V Vec = -15 V		0.7		1	
GS	V_{GS} = -4.5 V, V_{DS} = -15 V, I _D = -3.5 A		1.6		1	
GD			2.6		1	
			6.1		Ω	
					<u> </u>	
			8.0		ns	
,	V 10.V/V 15.V				-	
	$V_{GS} = -10$ V, $V_{DS} = -13$ V, $I_D = -3.5$ A, $R_G = 6 \Omega$				-	
			14		-	
			9.0		ns	
			16		-	
-	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -3.5 \text{ A}, \text{ R}_G = 6 \Omega$		25		-	
			22		1	
-					1	
SD	V _{GS} = 0 V, I _S = -1.0 A. T ₁ = 25°C		-0.8	-1.2	V	
					ns	
	V _{GS} = 0 V, I _S = −1.0 A, dI _{SD} /d _t = 100 A/μs				1	
-					nC	
	G on) on) off) off) off) off) off) off) o	$\begin{array}{c c} G & \\ \hline G & \\ \hline ont & \\ \hline off & \\ \hline off & \\ \hline \\ \hline f & \\ \hline \\ \hline f & \\ \hline \\ \hline \\ f & \\ \hline \\ \hline \\ f & \\ \hline \\ \hline \\ SD & V_{GS} = 0 \ V, \ I_S = -1.0 \ A, \ T_J = 25^\circ C \\ \hline \\ \hline \\ RR & \\ \hline \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	

2. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sc 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2% 4. Switching characteristics are independent of operating junction temperatures


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

-V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 13. Maximum Rated Forward Biased Safe Operating Area

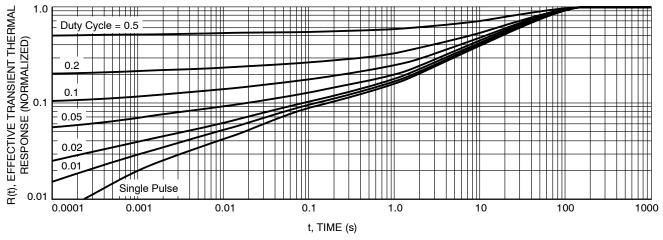
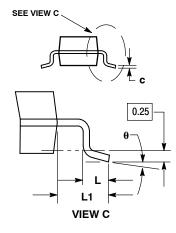



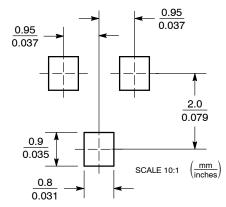
Figure 14. FET Thermal Response

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**

n Ē ΗE b

NOTES 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.


- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS, MINIMUM LEAD З. THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 318-01 THRU -07 AND -09 OBSOLETE, NEW STANDARD 318-08

	MILLIMETERS				INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	

STYLE 21: PIN 1. GATE SOURCE 2. 3

DRAIN

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative